Geographic Range
Diadema savignyi
lives in shallow waters off of the east coast of Africa near Madagascar, Tanzania,
and Kenya. It is found widespread across the Indo-Pacific region such as North Australia,
the Philippines, China, South Japan, East Indies, South Pacific Islands, and islands
in the western Indian Ocean.
- Biogeographic Regions
- oriental
- ethiopian
- australian
- oceanic islands
- indian ocean
- pacific ocean
Habitat
Diadema savignyi
lives in sand flats and coral reef areas, which are warm shallow areas near coasts.
This urchin lives successfully in crevices, but is also found in aggregate groups
on the sandy ocean floor or individually hidden under heads of coral.
- Habitat Regions
- tropical
- saltwater or marine
- Other Habitat Features
- intertidal or littoral
Physical Description
Diadema savignyi
is an urchin that that displays pentamerism, which is a quality of the class
Echinodermata
. This urchin has a round body (test) with many long spines, tube feet, and a dark
anal sac. The test can grow to 90 mm in diameter.
Diadema savignyi
is sympatric with the species
Diadema setosum
. The difference between these two species is coloration.
Diadema savignyi
has solid iridescent blue or sometimes green lines that run along its black test
and periproct (area surrounding anus) and
D. setosum
has dotted blue lines along its test and an orange line around its periproct.
- Other Physical Features
- ectothermic
- heterothermic
- radial symmetry
- Sexual Dimorphism
- sexes alike
Development
The female releases her eggs in the water column on the same day that the males release
sperm. The eggs are fertilized and develop into pluteus larvae. The time
D. savignyi
takes to form a blastula and turn into a larva is unknown, but development depends
on temperature, food availability, and salinity. In
D. setosum
the blastula develops into a blastua in 6 hours and an early plutei within 35 hours
depending on environmental conditions. The larva is complex and pelagic, feeding with
a cilliated feeding-band structure. Nerves are located along the cilliated band and
the esophogus. The larva has bilateral symmetry with left-right arm pairs that are
supported by calcareous skeletal rods. When the larva ages, parts of the band become
isolated and specialized for locomotion. A late-stage larva has pedicellariae. The
pluteus contains a complete gut. After this larval stage, the organism transforms
into an adult. The amount of time
D. savignyi
is in the larval stage is unknown, but in a similar species
D. setosum
the stage is 6 weeks long.
- Development - Life Cycle
- metamorphosis
Reproduction
Sea urchins spawn by gathering together and releasing millions of eggs and sperm into
the water column. An urchin does not have a specific mate or a social structure.
Diadema savignyi
spawns once a month in coordination with the lunar cycle.
Diadema savignyi
may interbreed with
D. setosum
, but this rarely occurs because the species spawn at different times in the lunar
cycle.
- Mating System
- polygynandrous (promiscuous)
Diadema savignyi
has separate sexes that show no external sexual differences. It reproduces throughout
the year and reproduction peaks at different times.
Diadema savignyi
reproduces monthly after the full moon during lunar days 17 and 18. The males produce
spermatocytes over the course of a month by the process spermatogenesis. Oogenesis
in females is also a month long process to create eggs (ova).
- Key Reproductive Features
- year-round breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- broadcast (group) spawning
There is no specific information about parental care for the species
D. savignyi
. No members of the genus
Diadema
provides parental care. Individuals release eggs and sperm into the water column
leaving the eggs to be fertilized, sink to the bottom, and develop into larvae.
- Parental Investment
- no parental involvement
-
pre-fertilization
- provisioning
Lifespan/Longevity
Diadema savignyi
has a high initial growth rate compared to
D. setosum
, but both species reach a similar size.
Diadema savignyi
has a short lifespan of 3 to 5 years. The results above are from a study performed
on caged indivuals off the coast of Kenya.
Behavior
Diadema savignyi is a solitary species that moves less than 1 meter. This urchin hides most of the day and moves at night to forage for algae to eat. This species lives in high population densities and individuals move closer together to increase fertilization.
Communication and Perception
Diadema savignyi
does not communicate in order to mate. Both sexes release gametes from lunar cues.
It does not have sense organs so it hides during the day and only moves a maximum
of 1 meter to forage for food at night.
Food Habits
Diadema savignyi
grazes on algae. It uses teeth that are on an apparatus called Aristotle's Lantern
to scrape the algae off of hard substrate such as rocks or dead coral substrate.
- Primary Diet
-
herbivore
- algivore
- Plant Foods
- algae
- Other Foods
- detritus
- Foraging Behavior
- stores or caches food
Predation
Species of
Diadema
are predated upon by 15 species of finfish, the spiny lobster, and 2 species of gastropods.
The finfish are mostly species with hard palates such as members of the families
Balistidae
and
Diodontidae
. The study performed analysis on gut contents, but did not observe predation specifically
on
D. savignyi
. The presence of more urchin species in a reef area increase the density of urchins
and then predation intensity by
Balistidae
decreases.
Ecosystem Roles
Diadema savignyi
is important to reef ecosystems because it grazes algae and prevents the algae from
blocking coral from receiving light. When a study was performed to reduce the number
of
D. savignyi
the reduction had a large effect on fish and algal biomass.
- Corals
- No commensals or parasites.
Economic Importance for Humans: Positive
Many people eat sea urchins around the world, but this custom is restricted to a few
species. There is no information whether
D. savignyi
is eaten, but a closely related species
D. setosum
is eaten in a few districts of Kyushu Island. This species is only eaten in a few
places because it is not very palatable.
- Positive Impacts
- food
Economic Importance for Humans: Negative
Diadema savignyi
and other species of
Echinoidea
can inflict some injury to people. The long spines can penetrate the skin when a
person steps or falls onto an urchin. An infection can occur, similar to a foreign-body
reaction if a spine detaches and is lodged in body tissue. The reaction occurs if
the spine takes time to be forced to the surface of the skin.
- Negative Impacts
- injures humans
Conservation Status
Diadema savignyi is not listed on the Red List, CITES appendices, or Endangered Species Act list.
Additional Links
Contributors
Kathleen Elmquist (author), University of Michigan-Ann Arbor, Phil Myers (editor), University of Michigan-Ann Arbor, Renee Mulcrone (editor), Special Projects.
- oriental
-
found in the oriental region of the world. In other words, India and southeast Asia.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Ethiopian
-
living in sub-Saharan Africa (south of 30 degrees north) and Madagascar.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oceanic islands
-
islands that are not part of continental shelf areas, they are not, and have never been, connected to a continental land mass, most typically these are volcanic islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Pacific Ocean
-
body of water between the southern ocean (above 60 degrees south latitude), Australia, Asia, and the western hemisphere. This is the world's largest ocean, covering about 28% of the world's surface.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- tropical
-
the region of the earth that surrounds the equator, from 23.5 degrees north to 23.5 degrees south.
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- reef
-
structure produced by the calcium carbonate skeletons of coral polyps (Class Anthozoa). Coral reefs are found in warm, shallow oceans with low nutrient availability. They form the basis for rich communities of other invertebrates, plants, fish, and protists. The polyps live only on the reef surface. Because they depend on symbiotic photosynthetic algae, zooxanthellae, they cannot live where light does not penetrate.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- intertidal or littoral
-
the area of shoreline influenced mainly by the tides, between the highest and lowest reaches of the tide. An aquatic habitat.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- radial symmetry
-
a form of body symmetry in which the parts of an animal are arranged concentrically around a central oral/aboral axis and more than one imaginary plane through this axis results in halves that are mirror-images of each other. Examples are cnidarians (Phylum Cnidaria, jellyfish, anemones, and corals).
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- polygynandrous
-
the kind of polygamy in which a female pairs with several males, each of which also pairs with several different females.
- year-round breeding
-
breeding takes place throughout the year
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- sedentary
-
remains in the same area
- colonial
-
used loosely to describe any group of organisms living together or in close proximity to each other - for example nesting shorebirds that live in large colonies. More specifically refers to a group of organisms in which members act as specialized subunits (a continuous, modular society) - as in clonal organisms.
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- detritus
-
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
- stores or caches food
-
places a food item in a special place to be eaten later. Also called "hoarding"
- food
-
A substance that provides both nutrients and energy to a living thing.
- herbivore
-
An animal that eats mainly plants or parts of plants.
References
Alender, C., F. Russel. 1966. Physiology of Echinodermata . New York: John Wiley & Sons.
Bak, R. 1990. Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Marine Ecology Progress Seies , 66: 267-272.
Coppard, S., A. Cambell. 2005. Lunar periodicities of diadematid echinoids breeding in Fiji. Coral Reefs , 24: 324-332.
Coppard, S., A. Cambell. 2006. Taxonomic significance of test morphology in the echinoid genera Diadema Gray, 1825 and Echinothrix Peters, 1854 (Echinodermata). Zoosystema , 28: 93-112.
Cronin, G., V. Paul, M. Hay, W. Fenical. 1997. Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defenses? Diterpenoid metabolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. Journal of Chemical Ecology , 23: 289-302.
Hoey, J. 2008. "The effect of herbivory by the long-spined sea urchin, Diadema savignyi on algae growth in the coral reefs of Moorea, French Polynesia" (On-line pdf). Accessed May 17, 2011 at http://www.escholarship.org/uc/item/7xj4g5dm .
Lessios, H. 2001. Molecular phylogeny of Diadema : Systematic implications. Pp. 487-495 in Echinoderms . Lisse: CRC Press.
Miner, B., L. Edward. 2001. Larval and life-cycle patterns in echinoderms. Zoology , 79: 1125-1169.
Muthiga, N., T. McClanahan, J. Lawrence. 2007. Edible Sea Urchins:Biology and Ecology . New York: Elsevier Science. Accessed May 17, 2011 at http://books.google.com/books?id=6T2JomruARoC&lpg=PA205&ots=Zd4J59hiXO&dq=%22Diadema%20savignyi%22%20and%20conservation&lr&pg=PA205#v=onepage&q=%22Diadema%20savignyi%22%20and%20conservation&f=false .
Muthiga, N. 2003. Coexistence and reproductive isolation of the sympatric echinoids Diadema savignyi Michelin and Diadema setosum (Leske) on Kenyan coral reefs. Marine Biology , 143: 669-677.
Palumbi, S. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecological Systems , 25: 547-572.
Shafir, S., T. McClanahan. 1990. Causes and consequences of sea urchin abundance and diversity of in Kenyan coral reef lagoons. Oecologia , 83: 362-370.