Geographic Range
Originally,
Dreissena bugensis
had a restricted distribution. Quagga mussels were located in the Dnieper-Bug Estuary
and Inguletz river in Ukraine where they were first discovered in 1890. They began
to expand throughout Eastern Europe into the Black Sea, Dnieper River, Pripiat River,
Main and Rhine Rivers, and to the Don and Manych Rivers. Then, 40 years after the
opening of the Volga-Don canal, they invaded the Volgo-Caspian. The canal connected
the two. They have also spread to North America and Canada, in Lake Ontario in 1991.
The quagga mussel has spread throughout the Great Lakes and the Mississippi River,
into Michigan, Missouri, New York, Nevada, Ohio, Pennsylvania, Colorado, Arizona and
California.
- Biogeographic Regions
- nearctic
- palearctic
Habitat
Quagga mussels live in freshwater estuarine habitats. During the planktonic stage
the larva swims as a free-living creature in the water. When the mussels become juveniles
they attach to natural hard surfaces such as rocks, wood, and plants native to the
freshwater lake or pond. In deeper waters where there is less turbulence, they are
also able to colonize soft surfaces such as sand. These mussels also attach themselves
to man-made structures made of steel, wood, nylon, metal piping, or concrete. Mature
mussels tend to attach themselves to these surface structures right under the surface
of the water less than 100 meters down unless the wind agitates them, in which case
they will live a little deeper down. They have been found as deep as 140 m, though
most are found at a depth of about 4 to 10 m.
- Habitat Regions
- temperate
- freshwater
- Aquatic Biomes
- lakes and ponds
- rivers and streams
- Other Habitat Features
- estuarine
Physical Description
Dreissena bugensis
, also known as the quagga mussel is a freshwater bivalve mollusk. During the larval,
or veliger stage the quagga mussel is microscopic at a size ranging from 40 to 462
micrometers. A full grown quagga mussel is no larger than a thumbnail, which is about
30 to 40 millimeters. The shell of the mussel is a light brown to almost white by
the hinge of the shell with black or dark brown stripes/rings. The shell is fan-shaped
with edges that come to points on both sides. Between the ventral and dorsal sides
the shell has a very rounded angle, or carina. The ventral side of the shell is convex,
making it impossible for the shell to be able to stand up. When quaggas are looked
at from the ventral view it is very clear that the two valves of the mussel are asymmetrical.
- Other Physical Features
- ectothermic
- heterothermic
- bilateral symmetry
Development
The life cycle of the quagga mussel starts when fertilization is done externally in
the water. Several days after fertilization, trochophore larva develop, starting the
planktonic stage of development. A trochophore is a free-swimming larva. In 4 to 5
days the trochophore will change into a D-shaped veliger. Soon the larva will form
a part of its shell called the umbone making the larva known as an umbonal veliger.
Then the veliger will develop a foot shaped structure, a characteristic of all mollusks,
becoming a pediveliger. With the formation of the shell and foot the pediveliger is
now able to attach itself to a substrate and start developing into a juvenile mussel.
Quagga mussels often stay in the form of a veliger for several weeks before starting
the process of becoming a mature mussel. Once a veliger becomes a juvenile mussel
it has entered into the benthic stage of development where it becomes sessile and
begins to grow. When a female settles into the juvenile stage, it can start reproducing
on its second year of life.
- Development - Life Cycle
- metamorphosis
Reproduction
Fertilization is external for
Dreissena bugensis
, so mating is limited to males and females in proximity to each other releasing their
gametes into the water.
Dreissena bugensis
are prolific breeders and they produce gametes in abundance. Female dreissenids can
produce 40,000 eggs in one reproductive cycle. Females and males live together and
fertilization is external once the gametes are released into the water. Water temperature
has an effect on reproduction, as warmer water temperatures have shown to initiate
quagga mussel spawning. Typically, quagga mussels reproduce year round.
- Key Reproductive Features
- year-round breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- broadcast (group) spawning
There is no parental care for
Dreissena bugensis
. Fertilization occurs outside the body of the female, and the developing mussels
are entirely independent of the parents.
- Parental Investment
- no parental involvement
Lifespan/Longevity
Typically the lifespan of the
Dreissena bugensis
is 4 to 5 years.
Behavior
Adult quagga mussels are sessile, meaning that they are fixed in one place and immovable.
The larval stage is free-swimming.
Communication and Perception
These mollusks have no head or eyes. Therefore, they are not able to see. They are
able to detect chemicals in the water, as well as gravity, movement, and temperature.
If quagga mussels feel threatened, they will tightly close their shell.
Food Habits
These mussels are filter feeders, meaning that they filter plankton and nutrients
suspended in the water. They use cilia, hair-like projections, to pull water into
their shell through a tube-like structure, the incurrent siphon. The nutrients are
then filtered out and the water then leaves the body of the mussel through another
tube-like structure, the excurrent siphon. Adult mussels are able to filter out about
one liter of water each day. Filtering can remove phytoplankton, zooplankton, and
algae.
- Primary Diet
- planktivore
- Animal Foods
- zooplankton
- Plant Foods
- algae
- phytoplankton
- Foraging Behavior
- filter-feeding
Predation
Quagga mussels have few natural predators. One predator is yellow perch,
Perca flavescens
. A study in 1994 showed that yellow perch found
D. bugensis
unpalatable, yet ten years later a second study found that yellow perch had introduced
the quagga mussel into its diet, becoming one of its few natural predators.
Ecosystem Roles
As an invasive species, Dreissena bugensis has a significant impact on the environment. Quagga mussels can filter large quantities of water, decreasing the levels of plankton and nutrients in the water, depriving other organisms. Quagga mussels often co-habitate with the closely related zebra mussel, Dreissena polymorpha , another invasive species. Quagga mussels have actually displaced zebra mussels in Ukraine, and appear to be doing so in the Great Lakes as well. Quagga mussels are capable of colonizing surfaces at greater depths than zebra mussels, so they tend to dominate at these lower depths.
Quagga mussels also have few natural predators, except for
yellow perch
, which allows them to further dominate waterways. The predation by yellow perch may
actually become detrimental, as a botulism causing bacteria called
Clostridium botulinum
that accumulates in the quagga mussels through their feeding habits is now being
exposed to the pre-existing food chain.
Clostridium botulinum
has already caused heavy damage in Lake Erie, killing tens of thousands of bird and
fish species, posing a serious threat to whatever ecosystem it is present in.
- bacterium, Clostridium botulinum
Economic Importance for Humans: Positive
There are no known positive effects of Dreissena bugensis on humans.
Economic Importance for Humans: Negative
Dreissena bugensis
is a persistent invasive species, forming thick layers on waterways, impeding water
flow, even clogging pipes in water treatment plants. The filter feeding abilities
of quagga mussels lower plankton levels and release pseudofeces that raise acid levels
in the water it inhabits, causing issues for other organisms in their habitat.
Conservation Status
Dreissena bugensis
is categorized as "least concern" by the IUCN. As a significant invasive species,
with a growing population, efforts are concerned with controlling populations, rather
than conservation.
Additional Links
Contributors
Ashley Eaton (author), Grand View University, Cody Redmond (author), Grand View University, LundyS Vansylalom (author), Grand View University, Felicitas Avendano (editor), Grand View University, Dan Chibnall (editor), Grand View University, Angela Miner (editor), Animal Diversity Web Staff.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- freshwater
-
mainly lives in water that is not salty.
- estuarine
-
an area where a freshwater river meets the ocean and tidal influences result in fluctuations in salinity.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- year-round breeding
-
breeding takes place throughout the year
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- sessile
-
non-motile; permanently attached at the base.
Attached to substratum and moving little or not at all. Synapomorphy of the Anthozoa
- sedentary
-
remains in the same area
- tactile
-
uses touch to communicate
- acoustic
-
uses sound to communicate
- chemical
-
uses smells or other chemicals to communicate
- zooplankton
-
animal constituent of plankton; mainly small crustaceans and fish larvae. (Compare to phytoplankton.)
- phytoplankton
-
photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)
- filter-feeding
-
a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.
- planktivore
-
an animal that mainly eats plankton
References
Benson, A., M. Richerson, E. Maynard, J. Larson, A. Fusaro. 2013. " Dreissena rostriformis bugensis " (On-line). USGS-Nonidigenous Aquatic Species. Accessed March 05, 2014 at http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=95 .
Britton, D. 2007. "Zebra & Quagga Mussel Invasion in North America" (On-line pdf). U.S. Fish & Wildlife Service. Accessed March 01, 2014 at http://www.100thmeridian.org/ActionTeams/RioGrande/zq.pdf .
Hickie, V. 2010. "The Quagga Mussel Crisis At Lake Mead National Recreation Area" (On-line). EBSCO Host. Accessed April 04, 2014 at http://web.a.ebscohost.com/ehost/detail?sid=39c43653-f8df-4732-8450-f77feab6ad2b%40sessionmgr4005&vid=1&hid=4206&bdata=JnNjb3BlPXNpdGU%3d#db=aph&AN=52236531 .
Hoddle, M. 2011. "CISR" (On-line). Quagga & Zebra Mussels. Accessed April 02, 2014 at https://cisr.ucr.edu/quagga_zebra_mussels.html .
Ianniello, R. 2013. "Effects of Environmental Variables on the Reproduction of Quagga Mussels ( Dreissena rostriformis bugensis ) in Lake Mead, NV/AZ" (On-line pdf). UNLV. Accessed March 02, 2014 at http://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=2843&context=thesesdissertations .
Mackie, G. 2010. " Dreissena bugensis (mollucs)" (On-line). Accessed March 10, 2014 at http://www.issg.org/database/species/ecology.asp?si=918&fr=1&sts=&lang=EN .
Mackie, G. 2010. " Dreissena bugensis " (On-line). Global Invasive Species Database. Accessed April 04, 2014 at http://www.issg.org/database/species/ecology.asp?si=918&fr=1&sts=&lang=EN .
Mills, E., G. Rosenberg, A. Spidle, M. Ludyanskiy, Y. Pligin, B. May. 1996. A review of the biology and ecology of the quagga mussel ( Dreissena bugensis ), a second species of dreissenid introduced to North America. American Zoologist , 36: 271-286.
Popple, I. 2006. "Perch discover nature's junk food" (On-line). Mcgill. Accessed April 04, 2014 at http://www.mcgill.ca/reporter/37/02/ricciardi/ .
Rintelen, T., D. Van Damme. 2014. "Range Description" (On-line). Accessed March 10, 2014 at http://eol.org/data_objects/28096977 .
Sykes, C. 2010. "Development of an Efficient Method for Removal of Quagga Mussel Veligers from Transport Tanks at Willow Beach National Fish Hatchery" (On-line pdf). Accessed March 04, 2014 at http://www.lcrmscp.gov/reports/2010/c30_quagga_mussel_10_26sep12.pdf .
Ussery, T., R. McMahon. 1995. "Comparative Study of the Desiccation Resistance of Zebra Mussels ( Dreissena polymorpha ) and Quagga Mussels ( Dreissena bugensis )" (On-line pdf). Accessed March 01, 2014 at http://el.erdc.usace.army.mil/elpubs/pdf/trel95-6.pdf .
Wisconsin DNR. 2014. "Quagga Mussels" (On-line). EEK-Critter Corner. Accessed March 01, 2014 at http://dnr.wi.gov/org/caer/ce/eek/critter/invert/quaggamussel.htm .