Geographic Range
Deathstalkers,
Leiurus quinquestriatus
, are native to the Oriental, Palearctic, and Palearctic regions. Members of the nominal
subspeices
L. quinquestriatus quinquestriatus
are found in northeastern Africa as far west as Algeria and Niger, as far south as
Sudan, and as far west as Somalia. Members of the subspeices
L. quinquestriatus hebraeus
are found throughout the Middle East as far north as Turkey, east to Iran, and south
to Oman and Yemen.
Habitat
Deathstalkers are found in arid and hyper-arid regions of North Africa and the Middle
East. They generally reside under rocks or in abandoned burrows of other animals.
They also create their own burrows about 20 cm below rocks.
- Habitat Regions
- terrestrial
- Terrestrial Biomes
- desert or dune
Physical Description
Deathstalkers are large venomous
scorpions
measuring 80 to 110 mm in length and weigh 1.0 to 2.5 g. They are yellowish in color
with brown spots on the metasomal segment V and sometimes on the carapace and tergites.
Tergites I and II have 5 carinae. The ventrolateral carinae have 3 to 4 rounded lobes,
and the anal arch has 3 rounded lobes.
Scorpions
have 2 eyes on the top of the head and often 2 to 5 pairs of eyes on the front corners
of their head.
- Other Physical Features
- venomous
Development
Little information is available regarding the specifics of development of deathstalkers.
However, most
scorpions
are viviparous. Young receive nourishment in the uterus either through the the embryo
and uterine wall similiar to placentals or through active transport if extra-embryonic
membranes are present. Young are relatively large when born. Most
scorpions
molt multiple times before becoming adults, though juveniles look like adults at
all instars.
- Development - Life Cycle
- neotenic/paedomorphic
Reproduction
Courtship and sperm transfer in
scorpions
, including deathstalkers, is a complicated process involving a "romenade Ă deux."
The male approaches a female and grasps her pedipalp chelae with his own chelae fingers.
A form of dance then takes place, lasting for several minutes until the male ejects
a spermatophore on suitable substrate. In the next stage, the male leads the female
to position her genital aperture over the spermatophore, and the female takes up the
sperm. Once sperm transfer has been completed, males and females usually separate.
Little is known about the specific reproductive behavior of deathstalkers. After a
gestation period of 122 to 277 days (average 185), females give birth to 35 to 87
offspring (average 62.7).
- Key Reproductive Features
- sexual
- fertilization
- viviparous
Specific parental behaviors of deathstalkers have not been studied. However, in close
relatives, young scorpions climb onto their mother’s back directly after birth. They
remain on their mother's back for the duration of their first instar, taking advantage
of their mother's protection. This also helps young regulate moisture.
- Parental Investment
- female parental care
Lifespan/Longevity
The lifespan of deathstalkers is not readily available. However, the lifespan of
scorpions
is variable, ranging from 4 to 25 years.
Behavior
Deathstalkers are nocturnal, which helps manage temperature and water balance, important
functions for survival in dry habitats. Many species of scorpions dig burrows in the
soil. They have flat bodies, allowing them to hide in small cracks, under rocks and
under bark.
Home Range
Little information is available regarding home ranges of deathstalkers.
Communication and Perception
Although
scorpions
have two eyes on the top of their head often 2 to 5 pairs of eyes on the front corners
of their head, they do not have good vision. Scorpions, including deathstalkers, utilize
their sense of touch to navigate and hunt, using their pectines and other organs.
They have tiny slit-like tarsal sensory organs near the tips of their legs which help
detect vibrations in the sand or soil. These organs can help provide information regarding
the direction and distance from potential prey. Scorpions may also use substrate vibrations
to identify potential mates and reduce violent interactions.
- Communication Channels
- tactile
- Other Communication Modes
- vibrations
- Perception Channels
- tactile
- vibrations
Food Habits
Scorpions
, including deathstalkers, generally consume small insects,
spiders
,
centipedes
,
earthworms
, and other scorpions. Scorpions detect and capture prey using their sense of touch
and by utilizing vibrations. They hide under stones, bark, wood, or other objects
no the ground where they search for prey or wait in ambush. Once they capture prey,
scorpions use their larger pincers to crush and draw prey toward the mouth.
- Primary Diet
- carnivore
- Animal Foods
- insects
- terrestrial non-insect arthropods
- terrestrial worms
Predation
Deathstalkers are commonly preyed upon members of their own speices and by other
scorpions
. Other invertebrate predators (e.g.
centipedes
) and vertebrates also prey on deathstalkers. They have high mortality directly after
birth. Mortality is higher in adults than individuals of intermediate age.
Ecosystem Roles
Deathstalkers consume a variety of invertebrates and other scorpions. Deathstalkers
are also preyed upon by vertebrates,
centipedes
, and other
scorpions
.
Economic Importance for Humans: Positive
Chlorotoxin originally isolated from venom of deathstalkers is used in cancer research.
Research is also being pursued regarding the possible use of other components of their
venom in the treatment of diabetes, as channels on which the neurotoxins act have
been linked to the regulation of insulin. However, such research is still in its early
stages. Scorpions are also good bio-indicators, as they are K-selected equilibrium
species that comprise a major group of predatory arthropods in arid ecosystems. Their
disappearance often indicates haabitat degradation. Programs to conserve terrestrial
invertebrates often target scorpions.
- Positive Impacts
- source of medicine or drug
- research and education
Economic Importance for Humans: Negative
Because of their potent venom, deathstalkers are one of the most dangerous scorpions
on Earth.
- Negative Impacts
-
injures humans
- bites or stings
- venomous
Conservation Status
Deathstalkers have not been evaluated by the IUCN, US Fish and Wildlife Service, or CITES.
Many species of
scorpions
are habitat specific and their ranges are restricted. Few species of scorpions receive
formal protection, and many may disappear before being described. Scorpions are increasingly
threatened by habitat destruction and collection for souvenirs and the pet trade.
Scorpions could also be vulnerable because of small litter sizes, long generation
times, and high mortality of sexually immature females.
Additional Links
Contributors
Ahmet Ceceli (author), Rutgers University, John Horsfield (author), Rutgers University, David V. Howe (editor), Rutgers University, Gail McCormick (editor), Animal Diversity Web Staff.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oriental
-
found in the oriental region of the world. In other words, India and southeast Asia.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Ethiopian
-
living in sub-Saharan Africa (south of 30 degrees north) and Madagascar.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- terrestrial
-
Living on the ground.
- desert or dunes
-
in deserts low (less than 30 cm per year) and unpredictable rainfall results in landscapes dominated by plants and animals adapted to aridity. Vegetation is typically sparse, though spectacular blooms may occur following rain. Deserts can be cold or warm and daily temperates typically fluctuate. In dune areas vegetation is also sparse and conditions are dry. This is because sand does not hold water well so little is available to plants. In dunes near seas and oceans this is compounded by the influence of salt in the air and soil. Salt limits the ability of plants to take up water through their roots.
- venomous
-
an animal which has an organ capable of injecting a poisonous substance into a wound (for example, scorpions, jellyfish, and rattlesnakes).
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- viviparous
-
reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.
- female parental care
-
parental care is carried out by females
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- tactile
-
uses touch to communicate
- vibrations
-
movements of a hard surface that are produced by animals as signals to others
- tactile
-
uses touch to communicate
- vibrations
-
movements of a hard surface that are produced by animals as signals to others
- drug
-
a substance used for the diagnosis, cure, mitigation, treatment, or prevention of disease
- venomous
-
an animal which has an organ capable of injecting a poisonous substance into a wound (for example, scorpions, jellyfish, and rattlesnakes).
- carnivore
-
an animal that mainly eats meat
- insectivore
-
An animal that eats mainly insects or spiders.
References
Abushama, F. 1964. Bioclimate, diurnal rhythms and water-loss in the scorpion Leiurus quinquestriatus. Entomology Monthly Magazine , 98: 216-224.
Abushama, F. 1968. Observations on the mating behaviour and birth of Leiurus quinquestriatus (H. & E.), a common scorpion species in the Central Sudan. Revue de zoologie et de botanique africaines , 77: 36-43.
Abushama, F. 1964. On the behaviour and sensory physiology of the scorpion Leiurus quinquestriatus. Animal Behavior , 12(1): 140-153.
Babu, K., M. Ganetsky, A. Sheroff, E. Boyer, S. Bird. 2005. A deathstalker scorpion envenomation in Rhode Island. Clinical Toxicology , 43: 710.
Benton, T. 1991. Reproduction and Parental Care in the Scorpion, Euscorpius Flavicaudis. Behaviour , 117(1-2): 20-28. Accessed November 05, 2010 at http://www.jstor.org/pss/4534928 .
Cloudsley-Thompson, J. 1961. Observations on the biology of the scorpion Leiurus quinquestriatus in the Sudan. Entomology Monthly Magazine , 97: 153-155.
Cloudsley-Thompson, J. 1965. The Scorpion. Science , 1: 35-41.
Fet, V., G. Lowe, D. Sissom, M. Braunwalder. 2000. Catalog of the Scorpions of the World (1758-1998) . New York, NY: New York Entomological Society.
Gouge, D., K. Smith, C. Olson, P. Baker. 2001. "Scorpions" (On-line). Cooperative Extension, College of Agriculture & Life Sciences, The University of Arizona. Accessed December 15, 2010 at http://ag.arizona.edu/pubs/insects/az1223/ .
Hadley, N. 1974. Adaptional biology of desert scorpions. Journal of Arachnology , 2: 11-23.
Jackman, J. 1999. "Scorpions" (On-line). Entomology at Texas A&M University. Accessed November 14, 2010 at http://insects.tamu.edu/extension/bulletins/l-1678.html .
Krimm, I., N. Gilles, P. Sautiere, M. Stankiewicz, M. Pelhate, D. Gordon, J. Lancelin. 1999. Structures and activity of a novel alpha-like toxin from the scorpion Leiurus quinquestriatus habraeus. Journal of Molecular Biology , 285(4): 1749-1763.
Levy, G., P. Amitai. 1980. Arachnida (Fauna Palaestina) . Israel: Israel Academy of Sciences & Humanities.
Lourenço, W., J. Qi, J. Cloudsley-Thompson. 2006. The African species of the genus Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) with the description of a new speices. BoletĂn Sociedad EntomolĂłgica Aragonesa , 39: 97-101. Accessed November 05, 2010 at http://s1.e-monsite.com/2009/01/02/5381590leiuruscameroon-pdf.pdf .
Lourenço, W. 2000. Reproduction in scorpions, with special reference to parthenogenesis. European Arachnology 2000 , 1: 71-85. Accessed November 05, 2010 at http://www.european-arachnology.org/proceedings/19th/Lourenco.PDF .
Polis, G., R. Farley. 1979. Behavior and ecology of mating in the cannibalistic scorpion, Paruroctonus mesaensis. Journal of Arachnology , 7: 33-46.
Prendini, L. 2006. "Why Study Scorpions" (On-line). Scorpion Systematics Research Group at AMNH. Accessed November 15, 2010 at http://scorpion.amnh.org/page3/page3.html .
Ross, L. 2009. Notes on gestation periods and litter size in the arenicolous buthid scorpion Leiurus quinquestriatus (Ehrenberg, 1828) (Scorpiones: Buthidae). Journal of Venomous Animals and Toxins including Tropical Diseases , 15/2: 347-352. Accessed November 14, 2010 at http://www.scielo.br/pdf/jvatitd/v15n2/a15v15n2.pdf .
Shalita, E., R. Wells. 2007. Treatment of Yellow Scorpion (Leiurus quinquestriatus) Sting: A Case Report. Journal of the American Pharmacists Association , 47(5): 616-619.
Sissom, W., G. Polis, D. Watt. 1990. The Biology of Scorpions . Stanford, California: Stanford University Press.
Sontheimer, H., J. Deshane, C. Garner. 2002. Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2. The Journal of Biological Chemistry , 278: 4135-4144.
Warburg, M., R. Elias, M. Rosenberg. 1995. Ovariuterus and oocyte dimensions in the female buthid scorpion, Leiurus quinquestriatus H. & E. (Scorpiones: Buthidae), and the effect of higher temperature. Invertebrate Reproduction & Development , 27(1): 21-28.
Warburg, M., R. Elisa. 1998. Differences in the scorpion female reproductive system of Leiurus quinquestriatus H & E (Buthidae), in two populations inhabiting different zoogeographical regions in Israel. Journal of Arid Environments , 40(1): 91-95.