Geographic Range
Moss crabs, also known as decorator crabs, are found along the southwest coast of
North America from Redding Rock, California to Natividad Island (Baja, California).
Habitat
Moss crabs are marine crustaceans that are most commonly found in the middle and deeper
reef regions of kelp forests. They may also be found in rocky areas or on underwater
structures in the epipelagic zone, up to 183 m deep. This species prefers habitat
with plants or other cover material, which provides protection from open water predators.
- Habitat Regions
- temperate
- saltwater or marine
- Aquatic Biomes
- coastal
Physical Description
Moss crabs are large spider crabs. Average carapace width ranges from 68 mm (female)
to 88 mm (male), with a maximum carapace length of up to 100 mm. The carapace is pear-shaped
(pointed anteriorly) and is covered in short hairs, called setae, which are used in
attaching various materials for camouflage. Two rows of hooked setae are present on
the rostrum, as well as a sharp spine above and next to each eye. The walking legs
and carapace areas near the gills and stomach are also covered in setae. Camouflage
materials are placed in the setae rows, keeping them firmly attached. While it is
not usually visible, due to being covered with attached items, the carapace color
is typically dark green, brown, or gray-brown. One spine and a dome-shaped structure
are present on the hepatic region. These crabs have four pairs of walking legs, located
on each side of the shell, and one pair of chelae (claws) located anteriorly. Walking
leg length is usually very similar or equal to the carapace width, with the second
pair of walking legs being the longest. In addition to their larger carapace width,
males also have much larger chelae than females.
- Other Physical Features
- ectothermic
- bilateral symmetry
- Sexual Dimorphism
- male larger
Development
Moss crab eggs are attached to setae on their mother's pleopods; eggs may be as large
as 0.55 mm in diameter. As embryos grow, they consume egg yolk and, as eggs near hatching,
they turn gray in color. These crabs begin life as protozoea larvae. After approximately
30 days, they develop into planktonic zoeae, swimming with limb-like cephalothorax
structures, which will develop into the antennae and mandibles. A zoea completes two
additional developmental stages, lasting about 18 days, before metamorphosing into
a megalops, resembling a small adult. After additional molts, it becomes a juvenile
crab, with an average carapace width of 1.5 mm, and eventually develops into a sexually
mature adult. Development for this species has not been extensively studied, but some
research suggests that the length of time of larval development is dependent on water
temperature, with colder temperatures causing slower development and lower reproductive
output.
- Development - Life Cycle
- metamorphosis
Reproduction
The mating system of moss crabs has not been described, however the mating system
of a closely related spider crab, (
Libinia spinosa
) may be similar. Male spider crabs have two pairs of gonopods of different sizes
located anterio-ventrally. The larger pair is inserted into a female’s gonopores (vulvae)
during copulation. There are six different types of setae on a male's gonopods, which
many aid in positioning during copulation. Rosette glands, producing seminal fluid
(males) and nutritional support for fertilized eggs (female), are located in the gonopods
of males and the pleopods of females. They may also aid in molting. Sheep crab (
Loxorhynchus grandis
), another closely related species, comes to shoreline areas to mate. Males compete
with each other to find female partners. After a male is successful, he uses his back
legs to hook a female to him, back to back, creating an obstetrical pair.
- Mating System
- polygynandrous (promiscuous)
Mating occurs throughout the year, rather than seasonally. Females reproduce for 1-2
month periods with short resting periods in between, producing an average of 3.5 broods
per year. Though information on brood size for moss crabs is not available, closely
related sheep crabs lay between 125,000 and 500,000 eggs per brood, and moss crabs
may produce broods of similar sizes. Recently laid eggs may be found on a female's
pleopods in an undifferentiated, gelatinous mass. Within a day, however, each egg
develops a membrane and a thin filament, which attaches it to the pleopod setae.
- Key Reproductive Features
- iteroparous
- year-round breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- oviparous
Female moss crabs carry fertilized eggs on their pleopodal setae for a short period
of time. Once eggs have hatched, there is no further investment from either parent.
- Parental Investment
- female parental care
-
pre-fertilization
-
protecting
- female
-
protecting
-
pre-hatching/birth
-
protecting
- female
-
protecting
Lifespan/Longevity
There is currently no data available on the average or maximum lifespan for this species.
Behavior
Moss crabs are known for decorating their shells by attaching other organisms such
as algae, sponges, and bryozoans to their shells, helping them to blend in with their
environments. They do not use an adhesive material to attach decorations, instead
using their hooked setae to secure materials and other organisms; in one experiment,
crabs whose setae were removed were unable to decorate until their next molt. Decorating
materials may be chewed before attaching, probably to soften them. Molting only occurs
during juvenile stages; Moss crabs do not molt again after reaching sexual maturity.
After molting, they may remove decorations from their old shells and re-attach them
to their new ones. Larger crabs decorate much less than smaller ones, and younger
crabs have longer setae and generally decorate more, aiding in camouflage and predator
avoidance.
As is characteristic of brachyuran crabs, moss crabs can shed a limb if it gets stuck
or is attacked by a predator. The crab can still effectively walk after the leg is
released. Eventually a new leg grows to replace the missing limb. Males with larger
claws tend to be dominant, which is particularly noticeable during mating.
These crabs have been found to demonstrate a cyclic pattern of population size, peaking
in the fall and reaching a low in the spring.
- Key Behaviors
- nocturnal
- motile
- sedentary
- dominance hierarchies
Home Range
Moss crabs are not known to occupy or defend particular home ranges or territories.
Communication and Perception
Although data specific to moss crab perception is not currently available, research
on decapods sheds some light on traits common to the order. They are known to have
compound eyes, tactile setae and olfactory filaments.
- Perception Channels
- visual
- tactile
- vibrations
- chemical
Food Habits
Moss crabs are generalist omnivores and scavengers, feeding on many kinds of invertebrates,
both living and dead (including worms, molluscs, and other crabs), algae, and giant
kelp. These crabs may also eat small amounts of their decorations to sustain themselves,
particularly under adverse conditions.
- Primary Diet
-
carnivore
- eats non-insect arthropods
- molluscivore
- vermivore
- eats other marine invertebrates
- scavenger
-
herbivore
- algivore
- omnivore
- planktivore
- mycophage
- detritivore
- Animal Foods
- mollusks
- aquatic or marine worms
- aquatic crustaceans
- other marine invertebrates
- zooplankton
- Plant Foods
- algae
- macroalgae
- phytoplankton
- Other Foods
- fungus
- detritus
- microbes
Predation
The decorated shells of moss crabs act as camouflage, which is important because these
crabs move very slowly. Moss crabs favor bryozoans as decorative materials, as some
species secrete chemicals that may deter predators.
Due to their relatively large size, moss crabs have fewer predators than other crab
species. They are, however, still a food source for a variety of fishes, marine mammals
(more rarely), and invertebrates.
- Anti-predator Adaptations
- cryptic
Ecosystem Roles
Moss crabs form mutualistic relationships with the organisms they use to decorate
their shells; the crabs gain protection in the form of camouflage, while the organisms
used for decorating benefit from the water currents created by the crabs' movements.
As scavengers, moss crabs also help to remove detritus from their environments. They
may also serve as hosts to bacterial infections, barnacles, and other parasites.
- Ecosystem Impact
- biodegradation
- Heterosaccus californicus (Class Maxillopoda , Phylum Arthropoda )
- Saprospira grandis (Class Sphingobacteria , Phylum Bacteroidetes )
Economic Importance for Humans: Positive
There are no known economic benefits of moss crabs to humans, beyond their display
in aquaria and use in various research projects.
- Positive Impacts
- research and education
Economic Importance for Humans: Negative
There are no known adverse effects of this species on humans.
Conservation Status
Additional Links
Contributors
Alyssa Sanders (author), University of Michigan-Ann Arbor, Alison Gould (editor), University of Michigan-Ann Arbor, Jeremy Wright (editor), University of Michigan-Ann Arbor.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- polygynandrous
-
the kind of polygamy in which a female pairs with several males, each of which also pairs with several different females.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- year-round breeding
-
breeding takes place throughout the year
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- internal fertilization
-
fertilization takes place within the female's body
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- female parental care
-
parental care is carried out by females
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- sedentary
-
remains in the same area
- dominance hierarchies
-
ranking system or pecking order among members of a long-term social group, where dominance status affects access to resources or mates
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- vibrations
-
movements of a hard surface that are produced by animals as signals to others
- chemical
-
uses smells or other chemicals to communicate
- zooplankton
-
animal constituent of plankton; mainly small crustaceans and fish larvae. (Compare to phytoplankton.)
- macroalgae
-
seaweed. Algae that are large and photosynthetic.
- phytoplankton
-
photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)
- detritus
-
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
- cryptic
-
having markings, coloration, shapes, or other features that cause an animal to be camouflaged in its natural environment; being difficult to see or otherwise detect.
- biodegradation
-
helps break down and decompose dead plants and/or animals
- carnivore
-
an animal that mainly eats meat
- molluscivore
-
eats mollusks, members of Phylum Mollusca
- scavenger
-
an animal that mainly eats dead animals
- herbivore
-
An animal that eats mainly plants or parts of plants.
- omnivore
-
an animal that mainly eats all kinds of things, including plants and animals
- planktivore
-
an animal that mainly eats plankton
- mycophage
-
an animal that mainly eats fungus
- detritivore
-
an animal that mainly eats decomposed plants and/or animals
References
Alvarez, F., E. Campos, J. Høeg, J. O'Brien. 2001. Distribution and prevalence records of two parasitic barnacles (Crustacea: Cirripedia: Rhizocephala) from the west coast of North America. Bulletin of Marine Science , 68/2: 233-241. Accessed July 29, 2013 at http://www.ingentaconnect.com/content/umrsmas/bullmar/2001/00000068/00000002/art00008?crawler=true .
Chase, F., R. Knowlton. 2007. Decapoda (Crustacea). Pp. 286-296 in AccessScience , Vol. 5, 10 Edition. New York: McGraw-Hill Companies. Accessed March 25, 2012 at http://accessscience.com/content/Decapoda-%28Crustacea%29/181900 .
Garth, J., D. Abbott. 1980. Intertidal invertebrates of California . Stanford, California: Stanford University Press.
Hendrickx, M., J. Cervantes. 2003. A new species of Loxorhynchus Stimpson (Decapoda, Majoidea, Pisidae) from the Pacific Coast of Mexico. Crustaceana , 76/1: 103-113. Accessed February 15, 2012 at http://www.jstor.org/stable/20105541 .
Hines, A. 1982. Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology , 69/3: 309-320. Accessed March 24, 2012 at http://link.springer.com.proxy.lib.umich.edu/content/pdf/10.1007%2FBF00397496.pdf .
Hines, A. 1982. Coexistence in a kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecological Society of America , 52/2: 179-198. Accessed February 02, 2012 at http://www.jstor.org/stable/1942610 .
Hines, A. 1986. Larval patterns in the life histories of Brachyuran crabs (Crustacea, Decapoda, Brachyura). Bulletin of Marine Science , 39/2: 444-446. Accessed March 24, 2012 at http://www.ingentaconnect.com/content/umrsmas/bullmar/1986/00000039/00000002/art00025?crawler=true .
IUCN, 2013. "The IUCN Redlist of Threatened Species. Version 2013.1" (On-line). Accessed July 31, 2013 at http://www.iucnredlist.org .
Jorge, L. 1985. Caries-like infections in Loxorhynchus crispatus (Crustacea, Brachyura, Majidae). Journal of Invertebrate Pathology , 45/2: 247-248. Accessed January 29, 2012 at http://www.sciencedirect.com.proxy.lib.umich.edu/science/article/pii/0022201185900175 .
McGaw, I., J. Stillman. 2010. Cardiovascular system of the Majidae (Crustacea: Decapoda). Arthropod Structure and Development , 39/5: 340-349. Accessed February 02, 2012 at http://www.sciencedirect.com.proxy.lib.umich.edu/science/article/pii/S1467803910000265 .
Sal Moyano, M., M. Gavio, E. Cuartas. 2011. Copulatory system of the spider crab Libinia spinosa (Crustacea: Brachyura: Majoidea). Journal of the Marine Biological Association of the United Kingdom , 91/8: 1617-1625. Accessed April 02, 2012 at http://journals.cambridge.org.proxy.lib.umich.edu/download.php?file=%2FMBI%2FMBI91_08%2FS0025315411000257a.pdf&code=db77d0c7f29434e7d298f403f4d38dc7 .
Stevens, M., S. Merilaita. 2011. Animal Camouflage: Mechanisms and Function . New York: Cambridge University Press.
Wicksten, M. 1978. Attachment of decorating materials in Loxorhynchus crispatus (Brachyura: Majidae). Transactions of the American Microscopical Society , 97/2: 217-220. Accessed January 30, 2012 at http://www.jstor.org/stable/3225595 .
Wicksten, M. 1979. Decorating behavior in Loxorhynchus crispatus Stimpson and Loxorhynchus grandis Stimpson (Brachyura, Majidae). Crustaceana (Supplement) , 5: 37-46. Accessed February 02, 2012 at http://www.jstor.org/stable/25027481 .
2013. " Loxorhynchus crispatus -Masking crab" (On-line). Sanctuary Integrated Monitoring Network (SIMoN). Accessed July 19, 2013 at http://www.sanctuarysimon.org/species/loxorhynchus/crispatus/masking-crab .
California Department of Fish and Game. Sheep Crab. 2001098707. University of California: Agriculture and Natural Resources. 2001. Accessed March 25, 2012 at http://www.dfg.ca.gov/marine/status/status2001.asp .