Geographic Range
Queensland tube-nosed fruit bats (
Nyctimene robinsoni
) are found along the east coast of Queensland, Australia ranging from northern New
South Wales to the Cape York Peninsula. Few observations have been made on the occurrence
of Queensland tube-nosed fruit bats south of the Queensland border but they are believed
to have a more scattered distribution at the southern end of their range. Recordings
of the southern range of Queensland tube-nosed fruit bats were taken south of Nightcap
National Park at Snows Creek (a tributary of Coopers Creek found 26 km north north
east of Lismore, New South Wales) and around the forest canopy at Boomerang Falls
Flora Reserve (about 5 km south south west of Snows Creek). Queensland tube-nosed
fruit bats are generally dispersed along the coast throughout their range; the farthest
inland recording is also the most southerly recording and comes from the Culmaran
Creek valley in Richmond Range State Forest approximately 84 km east of the coast.
A specimen housed by the Australian Museum is reported to come from as far south as
Wee Jasper, New South Wales, however this is believed to be attributed to a labeling
error and this specimen has been determined to be
island tube-nosed fruit bat
.
- Biogeographic Regions
- australian
Habitat
Although regarded as a rainforest specialist Queensland tube-nosed fruit bats are
found throughout complex notophyll vine forests, Araucarian notophyll vine forests,
mixed tall open forests, sclerophyll vegetation, and in urban areas. Accounts of Queensland
tube-nosed fruit bats suggest that they prefer to roost amongst foliage in the rainforest
sub-canopy layer where they find effective camouflage within the dried leaves. However
they have also been noted in exposed trees on forest margins. Individuals may roost
alone from approximately 4 to 6 m above the ground to higher up and out of sight in
the canopy. Individuals show day-roost site fidelity over short periods, mainly during
ripe fruit abundances, within an area; but may change roost sites as a predator avoidance
strategy. Day-roost sites chosen by Queensland tube-nosed fruit bats are variable
and include: primary forest sites, isolated tropical fig trees (
Fiscus veriegata
), hind-dune mangroves, and second-growth forests near mangroves.
- Habitat Regions
- tropical
- terrestrial
- Terrestrial Biomes
- savanna or grassland
- forest
- rainforest
- Aquatic Biomes
- coastal
- Other Habitat Features
- urban
- suburban
- agricultural
Physical Description
The skull of the genus of
tube-nosed fruit bats
can be described as short and heavy with anteriorly deep rostrum. Their lacrimal
widths are a greater than distance from orbit to nares. They have narrow braincase,
slight basicranial flexion, and have an aveolar line which projects backwards and
passes through the condyle. Tube-nosed fruit bats have a non-tubular occiput and anteriorly
fused premaxillaries. They have no narrowing of the bony palate or only slight narrowing
behind maxillary toothrows. Tube-nosed fruit bats have parallel upper canines and
the distance between posterior molars is equal to width of interpterygoid fossa.
They have angular process of mandible that is greatly reduced and long tubular nostrils.
Their dental formula is incisors 1/0, canines, 1/1, premolars 3/3, and molars 1/2
equaling 24. P2/ and P/2 are well developed and equal in height to the cingulum of
the canines. The rest of the cheekteeth are molariform all of which have high well-developed
anterior cusps except for M/2, which is low crowned and about half the size of the
other molariform teeth. Tongues of tube-nosed fruit bats have four circumvallate papillae
((Anersen, 1912; Miller 1907) in Heaney and Peterson 1984).
The dentition of the genus of tube-nosed fruit bats is unique because they lack incisors
on the lower jaw; the lower canines function in place of the missing incisors. The
modified lower canines nearly come into contact with each other and close against
the 2 upper incisors when biting. This odd dentition is attributed to a distant ancestor
with reduced biting teeth, possibly due to a liquid based diet. In returning to a
diet of fruit a new biting mechanism evolved.
Queensland tube-nosed fruit bats have brown wings characteristically speckled with
yellow and lime-green spots. These spots provide each individual with their own “spot
code” as no two bats have the same pattern. Their fur is grey to red-brown with a
dark strip of fur centered down the dorsal side of their body. One of the most characteristic
features of this fruit bat is their large bulging tubular nostrils (protruding 5 to
6 mm from the face). This along with the characteristic yellow to green spots on their
wings, face, and ears, as well as their bulging eyes distinguishes them from all other
Australian bats.
The wings of Queensland tube-nosed fruit bats are short and broad compared to other
members of the
old world fruit bats
family. Queensland tube-nosed fruit bats gave a well-developed tail and a claw on
the index finger (Anersen, 1912; Miller 1907 as cited in Heaney and Peterson 1984).
Queensland tube-nosed fruit bats have a measured basal metabolic rate of 54.7 cubic
cm oxygen per h, and daily body tempatures ranging from 35 degrees C to 37 degrees
C. Heterothermy is rarely seen in the
old world fruit bats
family, however Queensland tube-nosed fruit bats have the ability to rapidly drop
their body teperature, metobolic rate, and enter torpor during day or night. Unlike
other bat species which use shivering or brown fat as their heat generating mechanisms,
Queensland tube-nosed fruit bats produce heat much more rapidly via tachycardia which
is under nervous and hormonal control.
Queensland tube-nosed fruit bats have an average head and body length of 100 to 110
mm as well as an average tail length of 20 to 25 mm. Commonly used as a proxy for
body condition by bat researchers the average forearm length and mass are 60 to 70
mm and 30 to 50 g respectively. Although little evidence of the sexual dimorphism
in Queensland tube-nosed fruit bats has been documented, sexual dimorphism of the
pelvic girdle has been suggested based on palpations of adult bats. The palpations
of the pelvic girdle of Queensland tube-nosed fruit bats indicate that they may exhibit
similar sexual dimorphism to other species of Australian
flying foxes
. Females have open, V-shaped pelvic girdles and the males have closed, O-shaped pelvic
girdles. Females have also been noted as having a more lightly colored pelage than
males while sub-adults have a more intermediate coloration. Despite this the overall
color patterns and average mass for both sexes are the same.
An analysis of the cellular DNA content of Queensland tube-nosed fruit bats has revealed
that they have fewer genes than any other mammal (smallest genome size). Their total
genome size is approximately half that of the human genome, which has implications
about which parts of the genomes of humans, or other mammals, are redundant.
- Other Physical Features
- endothermic
- heterothermic
- bilateral symmetry
- Sexual Dimorphism
- sexes colored or patterned differently
- sexes shaped differently
Reproduction
Little is known about the mating systems of Queensland tube-nosed fruit bats.
Little is known about the reproductive biology of Queensland tube-nosed fruit bats;
however most species belonging to the
old world fruit bats
family have long periods of mating, long pregnancies, and long lactation periods,
with the reproductive cycle lasting around 12 months in many species. Like the majority
of
old world fruit bats
species Queensland tube-nosed fruit bats are seasonal breeders.
Female Queensland tube-nosed fruit bats give birth to one pup between October and
December. Close relatives
Philippine tube-nosed fruit bats
are found in primary forests near water bodies and among upper canopy foliage which
is similar to the habitat requirements to Queensland tube-nosed fruit bats. The similarities
between these two species make Philippine tube-nosed fruit bats a decent proxy for
the reproduction of Queensland tube-nosed fruit bats. Heidmen (1987) found Philippine
tube-nosed fruit bats also have a single young each year. Gestation in Philippine
tube-nosed fruit bats are around three and a half months long while lactation lasts
four months or longer.
- Key Reproductive Features
- iteroparous
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- viviparous
Queensland tube-nosed fruit bats have long periods of lactation and the single pup
is carried by the mother until it grows rather large. No information is currently
available about parental care in this genus.
- Parental Investment
- altricial
- female parental care
Lifespan/Longevity
Nothing is known about the longevity of Queensland tube-nosed fruit bats. However
old world fruit bats
live at least 30 years in wild and captive settings.
Behavior
Queensland tube-nosed fruit bats are believed to roost exclusively solitarily. One
study in captivity found they used aggressive behavior, such as vocalized threats
and even physical attacks, when held captive with conspecifics, regardless of sex.
However a different study captured an adult female and sub-adult male in two different
nets and found these two bats to be more affiliative. They were observed in close
contact, even embracing. Although Queensland tube-nosed fruit bats roost exclusively
in a solitary fashion, they have been found to feed in a more gregarious manner with
multiple individuals feeding in a single tree. These conflicting observations on the
social behavior of Queensland tube-nosed fruit bats may be due to the costs associated
with cluster roosting, which would dampen the efficacy of their camouflage. Such costs
would not be imposed while foraging in the dark and the ripeness of fruit on individual
trees would also result in clusters of bats feeding on the same tree. Queensland tube-nosed
fruit bats have also been observed feeding simultaneously with
spectacled flying fox
in the same tree.
The short broad wings of Queensland tube-nosed fruit bats provide them with a low
aspect ratio (wing length to width) which allows for great maneuverability. This low
aspect ratio allows them to hover for several seconds and change the direction they
are facing while hovering. This behavior is rare for bats and is usually only seen
in small light-weight gleaners.
Observations made of southern populations of Queensland tube-nosed fruit bats documented
behaviors not reported in northern populations (which have been more thoroughly investigated).
These behaviors include the requirement to drink after prolonged hot and dry weather,
as well as a lack of activity during the cooler months of the year. Also, it includes
the movement of individuals into adjacent open forests and moist tall open forests
for occasional foraging and drinking.
Home Range
Queensland tube-nosed fruit bats roost solitarily in the sub-canopy of trees during
the day and feed on nearby fruiting trees within 200 m of their day roost at night.
Although generally found foraging within 200 m of their day roost sites they have
been captured from 63 m to 1012 m from their roosting sites using mist nets. Queensland
tube-nosed fruit bats have been found to change their roosting and feeding locations
in an opportunistic manner as they will move into new areas when food availability
changes. Although they do change their roosting or feeding sites, they will also remain
within a small area for prolonged periods of time during local food abundances.
Communication and Perception
The tubular shaped nostrils were once believed to function as snorkels to aid Queensland
tube-nosed fruit bats in feeding on messy fruit meals. However observations made of
Queensland tube-nosed fruit bats while feeding have revealed that they are not messy
eaters, indicating that the tubular nostrils must serve some other purpose. Further
investigation into the tubular nostrils has revealed that the nostrils can open and
close and move independently of each other. This opening and closing of the nostrils
occurs in response to auditory, visual, and olfactory cues and allows Queensland tube-nosed
fruit bats to scan their surrounds via olfaction. Like stereo vision from two eyes
or stereo hearing from two ears the independent functioning of the two nostrils allows
for stereo olfaction, providing independent measures of aroma concentrations. The
use of modified stereo olfaction system allows them to locate and follow odor plumes
in a three dimensional realm. This stereo olfaction system aides in finding preferred
fig fruits throughout the Australian rainforests.
Queensland tube-nosed fruit bats communicate via characteristic whistling calls which
also serve as a reliable indication of their presence within an area.
Food Habits
Queensland tube-nosed fruit bats are specialist frugivores feeding mainly on 3 species
of fig (
Ficus copiosa
;
Ficus nodosa
;
Ficus variegata
). They are also known to feed on lillypilly (
Syzigium corniflorum
), the exotics guava and soursop (
Psidium guajava
;
Annona muricata
) around orchards and ona pioneer species (
Fiscus racemos
) around abandoned pastures. The majority of individuals found feeding on soursop
are female which has been attributed to the different nutritional requirements of
pregnant and lactating females, particularly as soursop has a much higher fat and
protein content than the native figs. Foraging behavior is restricted to the understory
where cauliflorous (trunk-fruiting) trees are visited. Queensland tube-nosed fruit
bats generally forage on trees within close proximity to their day roosts. Fruit may
be carried away to be eaten or consumed on site at the tree where the fruit was growing.
Individuals can carry fruit weighing over half of their own body weight. In one instance
a 54 g bat was recorded carrying a 30 g fig. Multiple individuals will feed simultaneously
on the same tree and have even been noted feeding along with
spectacled flying foxes
.
- Plant Foods
- fruit
- nectar
- pollen
- flowers
Predation
By wrapping their wings around their body, the colored spots of their wings, face,
and ears make Queensland tube-nosed fruit bats cryptic when roosting during the day
amongst dense sun-mottled foliage. The color pattern of them is well adapted for camouflage
within the canopy as their dark dorsal stripe also resembles the center rib and stem
of a dead leaf. Their solitary roosting behavior may allow for enhanced efficacy of
their cryptic coloration, as larger groups would make this color pattern appear more
conspicuous. Queensland tube-nosed fruit bats also limit their activity during full
moon phases; this may be attributable to predator avoidance for visual nocturnal predators
such as owls.
- Anti-predator Adaptations
- cryptic
Ecosystem Roles
Queensland tube-nosed fruit bats are important seed dispersers and pollinators for
the Australian ecosystem. They are the only small, understory, seed-dispersing bat
in Australian tropical forests. When compared to the tropical forests of southeast
Asia and central America, which have many species of small, understory, fruit-eating
bats that share the task of dispersing seeds, the importance of the role played by
Queensland tube-nosed fruit bats in Australian rainforests is quite apparent.
Queensland tube-nosed fruit bats have been found with parasitic mites (
Meristaspis spp.
), which are common wing mites of
old World fruit bats
.
- Ecosystem Impact
- disperses seeds
- pollinates
- parasitic mites ( Meristaspis kolenati )
Economic Importance for Humans: Positive
Queensland tube-nosed fruit bats aid in forest succession as well as dispersal and
propagation of figs, providing enhanced economic value to old world tropical forests.
- Positive Impacts
- food
- produces fertilizer
- pollinates crops
Economic Importance for Humans: Negative
Increasing numbers of exotic fruit orchards in regions where Queensland tube-nosed
fruit bats are present have resulted in an increase of reports of these bats damaging
orchard fruits such as starfruit (
Averrhoa muricata
;
Averrhoa carambola
).
- Negative Impacts
- crop pest
Conservation Status
Queensland tube-nosed fruit bats have been noted as being vulnerable (NSW TSC act)
due to human development. Much of this concern is related to entanglement in barbed
wire fences. Increases in the number of orchards in Australia has led to increased
conflict with the farming community. Farmers have been known to hang nets around orchards
to keep the bats away from fruit crops. Bats that become entangled in the nets are
left to starve. Therefore understanding the biology of Queensland tube-nosed fruit
bats is particularly important for management strategies around fruit orchards in
order to minimize the damage to the fruit as well as the bats.
Additional Links
Contributors
Steve Smith (author), University of Manitoba, Jane Waterman (editor), University of Manitoba, Laura Podzikowski (editor), Special Projects.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- tropical
-
the region of the earth that surrounds the equator, from 23.5 degrees north to 23.5 degrees south.
- terrestrial
-
Living on the ground.
- tropical savanna and grassland
-
A terrestrial biome. Savannas are grasslands with scattered individual trees that do not form a closed canopy. Extensive savannas are found in parts of subtropical and tropical Africa and South America, and in Australia.
- savanna
-
A grassland with scattered trees or scattered clumps of trees, a type of community intermediate between grassland and forest. See also Tropical savanna and grassland biome.
- temperate grassland
-
A terrestrial biome found in temperate latitudes (>23.5° N or S latitude). Vegetation is made up mostly of grasses, the height and species diversity of which depend largely on the amount of moisture available. Fire and grazing are important in the long-term maintenance of grasslands.
- forest
-
forest biomes are dominated by trees, otherwise forest biomes can vary widely in amount of precipitation and seasonality.
- rainforest
-
rainforests, both temperate and tropical, are dominated by trees often forming a closed canopy with little light reaching the ground. Epiphytes and climbing plants are also abundant. Precipitation is typically not limiting, but may be somewhat seasonal.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- urban
-
living in cities and large towns, landscapes dominated by human structures and activity.
- suburban
-
living in residential areas on the outskirts of large cities or towns.
- agricultural
-
living in landscapes dominated by human agriculture.
- endothermic
-
animals that use metabolically generated heat to regulate body temperature independently of ambient temperature. Endothermy is a synapomorphy of the Mammalia, although it may have arisen in a (now extinct) synapsid ancestor; the fossil record does not distinguish these possibilities. Convergent in birds.
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- viviparous
-
reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.
- altricial
-
young are born in a relatively underdeveloped state; they are unable to feed or care for themselves or locomote independently for a period of time after birth/hatching. In birds, naked and helpless after hatching.
- female parental care
-
parental care is carried out by females
- arboreal
-
Referring to an animal that lives in trees; tree-climbing.
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- solitary
-
lives alone
- visual
-
uses sight to communicate
- acoustic
-
uses sound to communicate
- chemical
-
uses smells or other chemicals to communicate
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- acoustic
-
uses sound to communicate
- chemical
-
uses smells or other chemicals to communicate
- cryptic
-
having markings, coloration, shapes, or other features that cause an animal to be camouflaged in its natural environment; being difficult to see or otherwise detect.
- food
-
A substance that provides both nutrients and energy to a living thing.
- herbivore
-
An animal that eats mainly plants or parts of plants.
- frugivore
-
an animal that mainly eats fruit
References
Booth, C. 2007. Barbed Wire Action Plan. Queensland Conservation, Brisbane , 2: 1-17.
Chapman, A., L. Hall, M. Bennett. 1994. Sexual Dimorphism in the Pelvic Girdle of Australian Flying Foxes. Australian Journal of Zoology , 42: 261-265.
Domrow, R. 1967. Mite parasites of small mammals from scrub typhus foci in Australia. Australian Journal of Zoology , 15: 759-798.
Hall, L., J. Pettigrew. 1995. The bat with the stereo nose. Australian Natural History , 24: 26-28.
Hall, L. 1983. Queensland Tube-nosed Bat Nyctimene robinsoni.. Pp. 286-287 in Complete book of Australian mammals. . North Ryde, NSW: Cornstalk Pub..
Heaney, L., R. Peterson. 1984. A new species of tube-nosed fruit bat (Nyctimene) from Negros Island, Philippines (Mammalia: Pteropodidae). Occasional papers of the Museum of Zoology, University of Michigan , 708: 1-16.
Heideman, P. 1987. The reproductive ecology of a community of Philippine fruit bats (Pteropodidae, Megachiroptera). Doctoral dissertation, University of Michigan , 1: 205.
Milledge, D. 1987. Notes on the occurrence of the Queensland Tube-nosed Bat Nyctimene robinsoni in north-eastern New South Wales.. Macroderma , 3: 28-30.
Muscarella, R., T. Fleming. 2007. The role of frugivorous bats in tropical forest succession.. Biological Reviews , 82: 573-590.
Nellett, K. 2007. Analyzing Site Loyalty in Nyctimene robinsoni at the End of the Dry Season. ISP Collection , 144: 1-31.
Nowak, R. 1994. Walker's Bats of the World . Baltimore, MD: The Johns Hopkins University Press.
O'Brien, G. 1993. Seasonal reproduction in flying foxes, reviewed in the context of other tropical mammals.. Reproduction, fertility and development , 5: 499-521.
Richards, G. 1986. Notes on the natural history of the Queensland tube-nosed bat, Nyctimene robinsoni.. Macroderma , 2: 64-67.
Riek, A., G. Kortner, F. Geiser. 2010. Thermobiology, energetics and activity patterns of the Eastern tube-nosed bat (Nyctimene robinsoni) in the Australian tropics: effect of temperature and lunar cycle.. Journal of Experimental Biology , 213: 25-57.
Schulz, M. 1997. Notes on the eastern tube-nosed bat, Nyctimene robinsoni, from the Richmond Range, northeastern New South Wales.. Australian Mammalogy , 20: 127-130.
Schwab, I., J. Pettigrew. 2005. A choroidal sleight of hand.. British Journal of Ophthalmology , 89: 1398.
Spencer, H., T. Fleming. 1989. Roosting and Foraging Behavior of the Queensland Tube-Nosed Bat, Nyctimene-Robinsoni (Pteropodidae)-Preliminary Radio-Tracking Observations.. Wildlife Research , 16: 413-420.