Geographic Range
Mappin's moas were endemic to the North Island of New Zealand.
- Biogeographic Regions
- australian
- oceanic islands
- Other Geographic Terms
- island endemic
Habitat
Mappin's moas
were widespread throughout North Island habitats such as open forests, scrublands,
and grasslands.
- Habitat Regions
- temperate
- terrestrial
- Terrestrial Biomes
- savanna or grassland
- forest
Physical Description
Mappin's moas were large ratites, with a height to the shoulder of approximately 67
cm and a head height that reached about 97 cm. Female moas in the genus
Dinornis
could be significantly larger than their male counterparts, which may have been true
of
Pachyornis
species as well.
A fascinating feature of all moas was that they did not have wings, not even vestigial
remnants. It is also interesting to note that moas took much longer than extant birds
to reach adult body size, with development periods ranging from three to nine years.
The bill of
Pachyornis elaphatopus
closely resembles that of
Pachyornis mappini
and features a deeply grooved and pointed mandible. This characteristic of all members
of the genus
Pachyornis
suggests that they may have had the most powerful cutting mandibles of any moa.
- Other Physical Features
- endothermic
- homoiothermic
- bilateral symmetry
Reproduction
Since all species of moas are extinct it is impossible to be certain of mating behaviors.
However, similar ratites such as
emus
allow us to make inferences about moa mating systems.
Emu males maintain territories, compete with other males, and display to attract mates.
Male emus mate exclusively with one female for a season. During this period the female
lays the eggs and the male incubates them over the winter.
General reproductive behavior is difficult to determine since all species of moa were
extinct prior to European discovery of New Zealand. Nest findings suggest moas laid
one egg per season, which may have been incubated over the course of the winter.
Compared to extant
ratites
, moas took a long time to reach sexual maturity. The growth period of moas could
extend from as few as three years to as many as nine years, reaching sexual maturity
in as long as 5 years.
- Key Reproductive Features
- iteroparous
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- oviparous
Since moa behavior cannot be observed in the wild, inferences on parental investment
must be based on extant ratites. Male
emus <<Dromaius>.
incubate eggs that have been layed by the female over the course of the winter, remaining
on the nest except to eat and drink. After the eggs hatch, the precocial young accompany
the male while foraging until they approach maturity.
- Parental Investment
- precocial
- male parental care
-
pre-fertilization
- provisioning
-
protecting
- female
-
pre-hatching/birth
-
provisioning
- female
-
protecting
- male
-
provisioning
-
pre-weaning/fledging
-
protecting
- male
-
protecting
Lifespan/Longevity
Before humans began hunting moas they had no natural predators. This lack of predation
probably contributed to their long lifespan of over 30 years. Survivorship increased
as moas aged and grew, as they could browse for food throughout their height range.
Behavior
Since all species of moa are extinct, there is little data on their behavior. Other,
large
ratites
are proficient at moving about land quickly, however it is thought that moas traveled
only tens of kilometers throughout their lifetimes.
Moas were specialized for eating woody, fibrous material low in nutrition, requiring
them to forage almost constantly.
Communication and Perception
Since all species of moas are extinct, it is unclear how they communicated. Other
large ratites may offer comparison. It is possible that moas used vocal communication
in order to attract mates.
The evolution of mimicry among plants that were subject to moa herbivory suggests
that moas used vision to find food plants.
Food Habits
Based on the gizzard content of subfossil moas, it appears that they ingested stones
and pebbles to help digest the seeds, twigs, fruit, and leaves that they ate. Moas
were not well adapted to toxins in plants; they relied more heavily on eating fibrous
materials such as twigs, rather than fruits and leaves which held more of the anti-herbivory
defense mechanisms. Surviving on less poisonous, less nutritious, fibrous foods required
moas to have a diverse, high volume diet.
- Plant Foods
- leaves
- wood, bark, or stems
- seeds, grains, and nuts
- fruit
Predation
Other than humans, there are no known predators for any species of moa. In fact, there was little competition that faced moas prior to human settlement in New Zealand.
Ecosystem Roles
There is evidence of a coevolutionary relationship between moas and the plants that
they ate. Moa food plants developed physical defenses and mimicry to avoid predation.
Chemical defenses also evolved in some plants as a way to reduce herbivory from moas,
other plants developed systems of mimicry to emulate the appearance of plants that
moas would not eat.
The use of spines as a defense against grazing is used among
Aciphylla
plants, with populations of these plants having reduced spines in areas that would
have been inaccessible to moas.
The height of moas also contributed to the roles that they played in their ecosystem.
Since the moas could browse for food throughout their height range, trees and other
woody plants had selection pressure to grow large enough, quickly enough, so that
all of the saplings would not be decimated by the continuously browsing moas.
Economic Importance for Humans: Positive
All species of moas were major food sources for the Polynesian settlers of New Zealand,
ultimately resulting in their being hunted to extinction.
- Positive Impacts
- food
- body parts are source of valuable material
Economic Importance for Humans: Negative
There are no known adverse affects of Pachyornis mappini on humans.
Conservation Status
Pachyornis mappini
went extinct after the colonization of New Zealand by humans. Polynesian islanders
began colonizing the islands of New Zealand in the 13th century A.D. and hunted
P. mappini
to extinction by the time European explorers first arrived in 1642 A.D.
It is suggested that these moas were hunted to extinction within one hundred years
of human colonization since moas were easy prey and took nearly five years to reach
reproductive maturity.
Additional Links
Contributors
Tanya Dewey (editor), Animal Diversity Web.
Keenan Bailey (author), Kalamazoo College, Ann Fraser (editor, instructor), Kalamazoo College.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oceanic islands
-
islands that are not part of continental shelf areas, they are not, and have never been, connected to a continental land mass, most typically these are volcanic islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- island endemic
-
animals that live only on an island or set of islands.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- terrestrial
-
Living on the ground.
- tropical savanna and grassland
-
A terrestrial biome. Savannas are grasslands with scattered individual trees that do not form a closed canopy. Extensive savannas are found in parts of subtropical and tropical Africa and South America, and in Australia.
- savanna
-
A grassland with scattered trees or scattered clumps of trees, a type of community intermediate between grassland and forest. See also Tropical savanna and grassland biome.
- temperate grassland
-
A terrestrial biome found in temperate latitudes (>23.5° N or S latitude). Vegetation is made up mostly of grasses, the height and species diversity of which depend largely on the amount of moisture available. Fire and grazing are important in the long-term maintenance of grasslands.
- forest
-
forest biomes are dominated by trees, otherwise forest biomes can vary widely in amount of precipitation and seasonality.
- endothermic
-
animals that use metabolically generated heat to regulate body temperature independently of ambient temperature. Endothermy is a synapomorphy of the Mammalia, although it may have arisen in a (now extinct) synapsid ancestor; the fossil record does not distinguish these possibilities. Convergent in birds.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- young precocial
-
young are relatively well-developed when born
- male parental care
-
parental care is carried out by males
- diurnal
-
- active during the day, 2. lasting for one day.
- motile
-
having the capacity to move from one place to another.
- sedentary
-
remains in the same area
- food
-
A substance that provides both nutrients and energy to a living thing.
- herbivore
-
An animal that eats mainly plants or parts of plants.
- folivore
-
an animal that mainly eats leaves.
- granivore
-
an animal that mainly eats seeds
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- acoustic
-
uses sound to communicate
- chemical
-
uses smells or other chemicals to communicate
References
Anderson, A. 1989. Prodigious Birds: Moas and moa-hunting in prehistoric New Zealand . Cambridge: Press Syndicate of the University of Cambridge.
Atkinson, I., R. Greenwood. 1989. Relationships between Moas and Plants. New Zealand Journal of Ecology , 12: 67-96.
Baker, A., L. Huynen, O. Haddrath, C. Millar, D. Lambert. 2005. Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA: The giant moas of New Zealand. Proceedings of the National Academy of Sciences of the United States of America , 102. Accessed October 16, 2006 at http://www.pnas.org/ .
Diamond, J. 2000. Blitzkrieg Against the Moas. Science , 287: 2170-2171.
Holdaway, R., C. Jacomb. 2000. Rapid Extinction of the Moas (Aves:Dinornithiformes): Model, Test, and Implications. Science , 287: 2250-2251.
McGlone, M. 1989. The Polynesian settlement of New Zealand in relation to environmental and biotic changes. New Zealand Journal of Ecology , 12: 115.
Smuts-Kennedy, C., K. Collier, B. Clarkson, B. Burns, R. MacGibbon. 2004. "An ecological restoration plan for Maungatautari" (On-line pdf). Maungatautari Ecological Island Trust. Accessed November 12, 2006 at http://www.maungatrust.org/pdfs/restoration_plan_Nov_04.pdf .
Turvey, S., O. Green, R. Holdaway. 2005. Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature , 435: 940-943.