Diversity
Phylum
Placozoa
contains just two species of very small (2 to 3 mm in diameter and only 15 to 20
µm in width), simply organized, non-bilaterian metazoan organisms that superficially
resemble amoebas.
Treptoplax reptans
has not been seen since it was first described from the waters of Naples, Italy in
1896, but
Trichoplax adhaerens
, first discovered on the walls of a marine aquarium in Australia in 1883, is found
in tropical and subtropical marine waters around the world. These organisms are composed
of differentiated dorsal and ventral epithelial cell layers, which enclose a mesenchymal
syncytial net. Placozoans move via gliding, aided by the ciliated cells of the basal
epithelial layer, and feed by engulfing particles of organic detritus. They are able
to reproduce asexually via fission, but are also known to reproduce sexually.
Geographic Range
Placozoans are found globally in tropical and subtropical marine waters.
- Biogeographic Regions
- nearctic
- palearctic
- oriental
- ethiopian
- neotropical
- australian
- mediterranean sea
- Other Geographic Terms
- holarctic
Habitat
Placozoans were first identified from the walls of a marine aquarium. While they are
considered benthic organisms, they are also found in the water column. They are most
commonly found near shore, in the littoral zone, in warm waters.
- Habitat Regions
- temperate
- tropical
- saltwater or marine
- Other Habitat Features
- intertidal or littoral
Systematic and Taxonomic History
Trichoplax adhaerens
was first described by the German zoologist Franz Eilhard Schulze in 1883, with an
English-language report of his findings published in the United States in the same
year by Charles S. Minot.
Treptoplax reptans
, the only other named member of phylum
Placozoa
, was described by the Italian biologist Francesco Monticelli in 1893. However, this
species has not been observed since, and many question whether it ever existed as
a valid taxon.
At its first discovery, it was obvious to many scientists that
Trichoplax adhaerens
presents significant differences from other known groups of organisms. However, a
report classified it as the larval form of the cnidarian species
Eleutheria krohi
, which became the accepted hypothesis for the next several decades. In the 1970s,
scientists, particularly the German protozoologist Karl Gottlieb Grell, renewed examinations
of this species and demonstrated that the individuals examined were, in fact, adults.
Trichoplax adhaerens
has since been widely accepted as the sole representative of the phylum
Placozoa
, a name coined by Grell in 1971. Several recent morphological and molecular phylogenetic
analyses have indicated that many additional species likely exist within this phylum,
including several higher order taxonomic groups. To date, however, none of these have
been formally described or named.
Our understanding of the relationships of placozoans to other animal phyla remains
in a state of flux. Early molecular phylogenetic analyses generally recovered them
as the sister group to
cnidarians
or
ctenophores
. Subsequent studies, using much higher numbers of independent genetic markers, indicated
that they occupy a basal position within metazoans as the sister group to the
Eumetozoa
, being placed between sponges (phylum
Porifera
) and all other multicellular animals. In contrast, results from analyses of mitochondrial
genomes and total evidence approaches suggested that animals form two clades based
on the organization of their tissues, with
Placozoa
representing the basal lineage in the dibloblast clade, which also includes sponges,
cnidarians, and ctenophores. However, the most recent molecular phylogenetic analyses
indicate that there is no strong support for any of these hypotheses, leaving the
true phylogenetic position of placozoans as a matter of intense, widespread scientific
interest and debate.
Physical Description
Placozoans are very small animals, measuring just 2 to 3 mm in diameter and typically
15 to 20 µm thick. They have traditionally been described as being composed only four
types of cells: cover (squamous), columnar, glandular, and fiber. They are asymmetrical
(although smaller animals tend to be circular), and their bodies lack anterior or
posterior ends. They do, however, have distinct ventral and dorsal sides, and are
essentially made up of three layers: dorsal epithelia, mesenchyme, and ventral epithelia.
Dorsal epithelial cells are cover, or squamous, cells; they are flattened, contain
lipid droplets, and each has a single cilia. Ventral epithelial cells are more columnar,
lack lipid droplets, but are also mainly monociliate. The ventral layer also has unciliated
glandular cells. Between these two layers, forming the interior of the animal, is
a layer of mesenchyme, composed of star-shaped fiber cells. The points of the “stars”
are connected, creating a network. There appears to be no basement membrane between
the epithelial layers and mesenchyme.
In situ hybridization studies of gene expression in the cells of
Trichoplax adhaerens
have indicated that this organism likely possesses more than just four cell types.
Though the newly identified cell types are morphologically indistinguishable, differential
gene expression patterns between them and previously characterized cell types strongly
suggest that they possess unique, albeit currently unknown, functions.
- Other Physical Features
- ectothermic
- heterothermic
- Sexual Dimorphism
- sexes alike
Development
New animals may be produced via binary fission or budding. Budding creates multicellular
flagellated “swarmers,” each of which becomes a new individual. Sexual reproduction
may occur, in which case holoblastic cell division proceeds following fertilization.
At the 64 cell stage, cell division ceases, while nuclear DNA multiplication continues
until the nucleus bursts.
Reproduction
Reproduction in placozoans is mainly asexual. Sexual reproduction may be observed
during times of high population density, high water temperature (23°C and greater),
and food depletion. Sexual reproduction occurs only through degeneration of the mother.
A single egg/oocyte as well as small, unflagellated cells (assumed to be sperm) develops
in the interspace of a degenerating placozoan.
Placozoans may reproduce asexually (via transverse fission or budding) or sexually.
Sexual reproduction seems to be triggered by environmental factors including water
temperature; this implies that, in some regions, animals may have both sexual and
asexual phases that may be dependent on the season.
- Key Reproductive Features
- seasonal breeding
- year-round breeding
- sexual
- asexual
Parental investment is not known to occur in placozoans.
- Parental Investment
- no parental involvement
Lifespan/Longevity
While strains of
Trichoplax adhaerens
have been maintained in lab settings for many years, little data is available regarding
their lifespans.
Behavior
Placozoans move using ciliary action and changes in body shape; there is evidence
that smaller (presumably younger) individuals may swim.
Communication and Perception
Little is known regarding how placozoans may perceive their environments. In laboratory
settings, they have been observed to react strongly when exposed to ultraviolet radiation.
- Perception Channels
- ultraviolet
Food Habits
Placozoans feed by phagocytosis, using their ventral surfaces (some of the glandular
cells located there produce digestive enzymes). In laboratory settings, they are known
to feed on flagellated chromists (
Cryptomonas
sp.) and chlorophytes (
Chlorella
sp.), other algae, the nauplii of
Artemia
species, and commercial fish food. It is suspected that they are opportunistic grazers,
and they may feed on organic detritus as well.
Predation
Potential predators have been observed reacting negatively to placozoans. In one instance,
a snail was observed touching a placozoan with its tentacle, then recoiling; in another
study, placozoans dropped onto the tentacles of hydroids caused paralysis. Structures
known as "shiny spheres," present in the upper epithelium of placozoans may somehow
serve as predator deterrents, though the mechanism by which they may do this is completely
unknown. The only predators reported for placozoans are snails in genus
Rhodope
and a small
nemertean
species.
Ecosystem Roles
Although they are
ciliates
,
nematodes
, and other small animals have been observed around or even on placozoans, they do
not seem to elicit any response and no parasitic or commensal relationships are known.
Economic Importance for Humans: Positive
Beyond potential scientific interest, there are no positive effects of placozoans on humans.
- Positive Impacts
- research and education
Economic Importance for Humans: Negative
There are no known adverse affects of placozoans on humans.
Conservation Status
There is no concern of either known placozoan species becoming threatened or endangered
at this time.
Additional Links
Contributors
Jeremy Wright (author), University of Michigan-Ann Arbor, Leila Siciliano Martina (editor), Texas State University.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oriental
-
found in the oriental region of the world. In other words, India and southeast Asia.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Ethiopian
-
living in sub-Saharan Africa (south of 30 degrees north) and Madagascar.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Neotropical
-
living in the southern part of the New World. In other words, Central and South America.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- holarctic
-
a distribution that more or less circles the Arctic, so occurring in both the Nearctic and Palearctic biogeographic regions.
Found in northern North America and northern Europe or Asia.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- tropical
-
the region of the earth that surrounds the equator, from 23.5 degrees north to 23.5 degrees south.
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- pelagic
-
An aquatic biome consisting of the open ocean, far from land, does not include sea bottom (benthic zone).
- benthic
-
Referring to an animal that lives on or near the bottom of a body of water. Also an aquatic biome consisting of the ocean bottom below the pelagic and coastal zones. Bottom habitats in the very deepest oceans (below 9000 m) are sometimes referred to as the abyssal zone. see also oceanic vent.
- reef
-
structure produced by the calcium carbonate skeletons of coral polyps (Class Anthozoa). Coral reefs are found in warm, shallow oceans with low nutrient availability. They form the basis for rich communities of other invertebrates, plants, fish, and protists. The polyps live only on the reef surface. Because they depend on symbiotic photosynthetic algae, zooxanthellae, they cannot live where light does not penetrate.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- intertidal or littoral
-
the area of shoreline influenced mainly by the tides, between the highest and lowest reaches of the tide. An aquatic habitat.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- seasonal breeding
-
breeding is confined to a particular season
- year-round breeding
-
breeding takes place throughout the year
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- asexual
-
reproduction that is not sexual; that is, reproduction that does not include recombining the genotypes of two parents
- motile
-
having the capacity to move from one place to another.
- sedentary
-
remains in the same area
- solitary
-
lives alone
- carnivore
-
an animal that mainly eats meat
- herbivore
-
An animal that eats mainly plants or parts of plants.
References
Brusca, R., G. Brusca. 2003. Invertebrates, 2nd Edition . Sunderland, MA: Sinauer Associates.
Collins, A. 2000. "Introduction to Placozoa " (On-line). University of California Museum of Paleontology. Accessed April 09, 2013 at http://www.ucmp.berkeley.edu/phyla/placozoa/placozoa.html .
DeSalle, R., B. Schierwater. 2008. An even “newer" animal phylogeny. Bioessays , 30: 1043-1047.
Eitel, M., L. Guidi, H. Hadrys, M. Balsamo, B. Schierwater. 2011. New insights into Placozoan sexual reproduction. PLOS One , 6/5: e19639. Accessed April 09, 2013 at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0019639 .
Eitel, M., H. Osigus, R. DeSalle, B. Schierwater. 2013. Global Diversity of the Placozoa . PLoS ONE , 8/4: e57131.
Grell, K. 1971. Embryonalenwicklung bei Trichoplax adhaerens F. E. Schulze. Naturwissenschaften , 58: 570.
Grell, K. 1971. Trichoplax adhaerens F. E. Schulze und die Entstehung der Metazoen. Naturwissenschaftliche Rundschau , 24: 160-161.
Guidi, L., M. Eitel, E. Cesarini, B. Schierwater, M. Balsamo. 2011. Ultrastructural analyses support different morphological lineages in the Placozoa , Grell 1971. Journal of Morphology , 272: 371-378.
IUCN, 2013. "The IUCN Red List of Threatened Species. Version 2013.2" (On-line). Accessed December 31, 2013 at http://www.iucnredlist.org/ .
Krumbach, T. 1907. Trichoplax , die umgewandelte Planula einer Hydromeduse. Zoologischer Anzeiger , 31: 450-454.
Lecointre, G., H. Le Guyader. 2006. The Tree of Life: A Phylogenetic Classification . Cambridge, MA: Harvard University Press.
Martinelli, C., J. Spring. 2003. Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens . Development Genes and Evolution , 213: 492-499.
Miller, D., E. Ball. 2005. Animal evolution: The enigmatic phylum Placozoa revisited. Current Biology , 15/1: R26-R28. Accessed April 09, 2013 at http://www.sciencedirect.com/science/article/pii/S0960982204009790 .
Miller, R. 1971. Trichoplax adhaerens Schulze 1883: return of an enigma. Biological Bulletin , 141: 374.
Minot, C. 1883. An apparently new animal type. Science , 1: 305.
Monticelli, F. 1893. Treptoplax reptans n.g., n.sp. Atti della Reale Accademia dei Lincei. Rendiconti , 5(II): 39-40.
Osigus, H., M. Eitel, B. Schierwater. 2013. Chasing the urmetazoon: Striking a blow for quality data. Molecular Phylogenetics and Evolution , 66/2: 551-557.
Pearse, V., O. Voigt. 2007. Field biology of placozoans ( Trichoplax ): distribution, diversity, biotic interactions. Integrative and Comparative Biology , 47/5: 677-692. Accessed April 09, 2013 at http://icb.oxfordjournals.org/content/47/5/677.full .
Phillipe, H., H. Brinkmann, D. Larov, D. Littlewood, M. Manuel, G. Wörheide, D. Baurain. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology , 9/3: e1000602.
Schierwater, B., M. Eitel, W. Jakob, H. Osigus, H. Hadrys, S. Dellaporta, S. Kolokotronis, R. DeSalle. 2009. Concatenated analysis sheds light on early metazoan evolution and fuels a modern “Urmetazoon" hypothesis. PLoS Biology , 7/1: e1000020.
Schierwater, B., M. Eitel, H. Osigus, K. von der Chevallerie, T. Bergmann, H. Hadrys, M. Cramm, L. Heck, M. Lang, R. DeSalle. 2010. Trichoplax and Placozoa : one of the crucial keys to understanding metazoan evolution. Pp. 289-326 in Key Transitions in Animal Evolution . Boca Raton, FL: CRC Press.
Schierwater, B., S. Kolokotronis, M. Eitel, R. DeSalle. 2009. The Diploblast-Bilateria sister hypothesis: Parallel evolution of a nervous systems may have been a simple step. Communicative and Integrative Biology , 2: 1-3.
Schierwater, B., M. Eitel, R. DeSalle. 2011. "World Placozoa Database" (On-line). Accessed April 09, 2013 at http://www.marinespecies.org/placozoa/index.php .
Schulze, F. 1883. Trichoplax adhaerens , nov. gen., nov. spec. Zoologischer Anzeiger , 6: 92-97.
Siddall, M. 2010. Unringing a bell: metazoan phylogenomics and the partition bootstrap. Cladistics , 26: 444-452.
Signorovitch, A., S. Dellaporta, L. Buss. 2006. Caribbean placozoan phylogeography. Biological Bulletin , 211/2: 149-156.
Srivastava, M., E. Begovic, J. Chapman, N. Putnam, U. Hellsten, T. Kawashima, A. Kuo, T. Mitros, A. Salamav, M. Carpenter, A. Signurovitch, M. Moreno, K. Kamm, J. Grimwood, J. Schmutz, H. Shapiro, I. Grigoriev, L. Buss, B. Schierwater, S. Dellaporta, D. Rokhsar. 2008. The Trichoplax genome and the nature of placozoans. Nature , 454: 955-960.
Srivastava, M., O. Simakov, J. Chapman, B. Fahey, M. Gauthier, T. Mitros, G. Richards, C. Conaco, M. Dacre, U. Hellsten, C. Larroux, N. Putnam, M. Stanke, M. Adamska, A. Darling, S. Degnan, T. Oakley, D. Plachetzki, Y. Zhai, M. Adamski, A. Calcino, S. Cummins, D. Goodstein, C. Harris, D. Jackson, S. Leys, S. Shu, B. Woodcroft, M. Vervoort, K. Kosik, G. Manning, B. Degnan, D. Rokhsar. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature , 466: 720-726.
Syed, T., B. Schierwater. 2002. Trichoplax adhaerens : Discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Millieu , 52/4: 177-187.
Voigt, O., A. Collins, V. Pearse, J. Pearse, A. Ender, H. Hadrys, B. Schierwater. 2004. Placozoa – no longer a phylum of one. Current Biology , 14/22: R944-R945. Accessed April 09, 2013 at http://www.sciencedirect.com/science/article/pii/S0960982204008413 .