The clubshell was historically found in the Ohio, Cumberland and Tennessee River systems and Lake Erie drainages. Within these river systems it was found in the Wabash, Kanawha, Kentucky, Green, Monogahela and Alleghany Rivers. The range of P. clava has been greatly reduced.
In Michigan P. clava is restricted to the St. Joseph River (of the Maumee drainage) in Hillsdale County. (Badra, 2001; Burch, 1975)
Pleurobema clava is found in streams and small rivers, in well oxygenated riffles with coarse sand and gravel and little silt. In Michigan, runs where it was found had water currents of 0.06-0.25 meters per second. (Badra, 2001; Watters, 1995)
The northern clubshell is up to 7.6 cm (3 inches) long , and is triangular and elongate in shape. The shell is usually fairly thick, and compressed to moderately inflated. The anterior end is rounded, the posterior end bluntly pointed. The dorsal margin is curved and slanted to the posterior end and the ventral margin is straight to slightly curved.
Umbos are low, being raised only slightly above the hinge line, and are situated at or near the anteriror end. The beak sculpture has concentric ridges at the tip of the umbo, and is not always visible.
The periostracum (outer shell layer) is yellow-brown with prominent broken green rays. Older specimens tend to be more brown or black.
On the inner shell, the left valve has two pseudocardinal teeth, which are small, triangular, serrated and erect. The two lateral teeth are straight to slightly curved, thin, and moderately long. The right valve has one large, erect triangular serrated pseudocardinal tooth and one lateral tooth that is also straight to slightly curved, thin and moderately long.
The beak cavity is shallow to moderately deep. The nacre is white and iridescent at the posterior end.
In Michigan, this species can be confused with the ellipse or the Wabash pigtoe. The ellipse is more compressed and has a more broadly rounded anterior end. The Wabash pigtoe lacks green rays and is also not as wedge-shaped as the clubshell. (Cummings and Mayer, 1992; Watters, 1995)
Fertilized eggs are brooded in the marsupia (water tubes) up to 11 months, where they develop into larvae, called glochidia. The glochidia are then released into the water where they must attach to the gill filaments and/or general body surface of the host fish. After attachment, epithelial tissue from the host fish grows over and encapsulates a glochidium, usually within a few hours. The glochidia then metamorphoses into a juvenile mussel within a few days or weeks. After metamorphosis, the juvenile is sloughed off as a free-living organism. Juveniles are found in the substrate where they develop into adults. (Arey, 1921; Lefevre and Curtis, 1910)
Age to sexual maturity for this species is unknown. Unionids are gonochoristic (sexes are separate) and viviparous. The glochidia, which are the larval stage of the mussels, are released live from the female after they are fully developed.
In general, gametogenesis in unionids is initiated by increasing water temperatures. The general life cycle of a unionid, includes open fertilization. Males release sperm into the water, which is taken in by the females through their respiratory current. The eggs are internally fertilized in the suprabranchial chambers, then pass into water tubes of the gills, where they develop into glochidia.
Pleurobema clava is a short-term brooder. Gravidity has not been recorded, so general spawning time is unknown. (Lefevre and Curtis, 1912; Watters, 1995)
Females brood fertilized eggs in their marsupial pouch. The fertilized eggs develop into glochidia. There is no parental investment after the female releases the glochidia.
The clubshell can live up to 50 years. (Badra, 2001)
Mussels in general are rather sedentary, although they may move in response to changing water levels and conditions. Although not thoroughly documented, the mussels may vertically migrate to release glochidia and spawn. Often P. clava is found buried under the substrate. (Watters, 1995)
The middle lobe of the mantle edge has most of a bivalve's sensory organs. Paired statocysts, which are fluid filled chambers with a solid granule or pellet (a statolity) are in the mussel's foot. The statocysts help the mussel with georeception, or orientation.
Mussels are heterothermic, and therefore are sensitive and responsive to temperature.
Unionids in general may have some form of chemical reception to recognize fish hosts. How the clubshell recognizes and/or attracts its fish host is unknown.
Glochidia respond to touch, light and some chemical cues. In general, when touched or a fluid is introduced, they will respond by clamping shut. (Arey, 1921; Badra, 2001; Brusca and Brusca, 2003; Watters, 1995)
In general, unionids are filter feeders. The mussels use cilia to pump water into the incurrent siphon where food is caught in a mucus lining in the demibranchs. Particles are sorted by the labial palps and then directed to the mouth. Mussels have been cultured on algae, but they may also ingest bacteria, protozoans and other organic particles.
The parasitic glochidial stage absorbs blood and nutrients from hosts after attachment. Mantle cells within the glochidia feed off of the host’s tissue through phagocytocis. (Arey, 1921; Meglitsch and Schram, 1991; Watters, 1995)
Unionids in general are preyed upon by muskrats, raccoons, minks, otters, and some birds. Juveniles are probably also fed upon by freshwater drum, sheepshead, lake sturgeon, spotted suckers, redhorses, and pumpkinseeds.
Unionid mortality and reproduction is affected by unionicolid mites and monogenic trematodes feeding on gill and mantle tissue. Parasitic chironomid larvae may destroy up to half the mussel gill. (Cummings and Mayer, 1992; Watters, 1995)
Fish hosts are determined by looking at both lab metamorphosis and natural infestations. Looking at both is necessary, as lab transformations from glochidia to juvenile may occur, but the mussel may not actually infect a particular species in a natural situation. Natural infestations may also be found, but glochidia will attach to almost any fish, including those that are not suitable hosts. Lab transformations involve isolating one particular fish species and introducing glochidia either into the fish tank or directly inoculating the fish gills with glochidia. Tanks are monitored and if juveniles are later found the fish species is considered a suitable host.
In lab trials, Pleurobema clava glochidia metamorphosed on the central stoneroller, striped shiner, logperch and blackside darter. (O'Dee and Watters, 2000)
Mussels are ecological indicators. Their presence in a water body usually indicates good water quality.
There are no significant negative impacts of mussels on humans.
Pleurobema clava is a federally Endangered species in the United States. The IUCN Red List considers this species Critically Endangered. The range of the clubshell has probably been reduced about 95% and this species is likely sensitive to siltation. (Badra, 2001)
Renee Sherman Mulcrone (author).
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
uses smells or other chemicals to communicate
an animal that mainly eats decomposed plants and/or animals
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
union of egg and spermatozoan
a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.
mainly lives in water that is not salty.
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
fertilization takes place within the female's body
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
having the capacity to move from one place to another.
the area in which the animal is naturally found, the region in which it is endemic.
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)
an animal that mainly eats plankton
breeding is confined to a particular season
remains in the same area
reproduction that includes combining the genetic contribution of two individuals, a male and a female
uses touch to communicate
movements of a hard surface that are produced by animals as signals to others
uses sight to communicate
reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.
Arey, L. 1921. An experimental study on glochidia and the factors underlying encystment. J. Exp. Zool., 33: 463-499.
Badra, P. 2001. Special animal abstract for Pleurobema clava (northern clubshell). Lansing, Michigan: Michigan Natural Features Inventory. Accessed October 10, 2005 at http://web4.msue.msu.edu/mnfi/abstracts/aquatics/Pleurobema_clava.pdf.
Brusca, R., G. Brusca. 2003. Invertebrates. Sunderland, Massachusetts: Sinauer Associates, Inc..
Burch, J. 1975. Freshwater unionacean clams (Mollusca: Pelecypoda) of North America. Hamburg, Michigan: Malacological Publications.
Cummings, K., C. Mayer. 1992. Field guide to freshwater mussels of the Midwest. Champaign, Illinois: Illinois Natural History Survey Manual 5. Accessed August 25, 2005 at http://www.inhs.uiuc.edu/cbd/collections/mollusk/fieldguide.html.
Lefevre, G., W. Curtis. 1912. Experiments in the artificial propagation of fresh-water mussels. Proc. Internat. Fishery Congress, Washington. Bull. Bur. Fisheries, 28: 617-626.
Lefevre, G., W. Curtis. 1910. Reproduction and parasitism in the Unionidae. J. Expt. Biol., 9: 79-115.
Meglitsch, P., F. Schram. 1991. Invertebrate Zoology, Third Edition. New York, NY: Oxford University Press, Inc.
O'Dee, S., G. Watters. 2000. New or confirmed host identifications for ten freshwater mussels. Freshwater Mollusk Symposium Proceedings: 77-82.
Oesch, R. 1984. Missouri naiades, a guide to the mussels of Missouri. Jefferson City, Missouri: Missouri Department of Conservation.
Parmalee, P. 1967. The fresh-water mussels of Illinois. Springfield, Illinois: Illinois State Museum Popular Science Series No. 8. 108 pp.
Watters, G. 1995. A guide to the freshwater mussels of Ohio. Columbus, Ohio: Ohio Department of Natural Resources.
van der Schalie, H. 1938. The naiad fauna of the Huron River, in southeastern Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 40: 1-83.