Geographic Range
Common rough woodlice are considered native to mainland Europe. This species has spread
throughout the world, including onto isolated islands such as Hawaii and Marion Island
(located between Africa and Antarctica) and is found on every continent, not including
Antarctica. Their dispersal has been facilitated by humans, as they can easily be
transported via leaf matter and wood. They prefer temperate climates.
- Biogeographic Regions
- nearctic
- palearctic
- oriental
- ethiopian
- neotropical
- australian
- oceanic islands
- Other Geographic Terms
- cosmopolitan
Habitat
Because they do not have a waxy cuticle covering their exoskeletons, common rough
woodlice prefer moist, dark areas where it is possible to avoid dessication. They
live under leaf litter, rocks, and fallen logs in forests, meadows, and gardens, and
are frequently found in splash zones, dunes and salt marshes. Although they are most
often found in leaf litter, they are often found on tree bark as well, particularly
during the summer.
- Habitat Regions
- temperate
- terrestrial
- Terrestrial Biomes
- desert or dune
- savanna or grassland
- forest
- Wetlands
- marsh
- Other Habitat Features
- urban
- agricultural
Physical Description
Common rough woodlice are ectothermic and have flat, elliptical-shaped bodies that
are heavily plated and typically grey or deep blue, though orange and albino specimens
have also been seen. They can grow up to 17 mm in length and, like other arthropods,
their bodies are segmented and bilaterally symmetrical. They have seven body segements,
each with a pair of legs, and their bodies are divided into three sections: head,
pereion (thorax), and pleon (abdomen), and their heads are divided into three lobes.
Their two pleopodia (appendages under their pleons), have pseudotrachia, allowing
for respiration through their pseudolungs. These pseudolungs appear as white patches
on the abdomen, and they are unable to be closed to prevent water loss. Weight varies
depending on water content, which can fluctuate greatly. These isopods have a warty
body surface with two short tails (uropodia) on their final body segments (telsons).
They have compound eyes and two pairs of antennae, a shorter pair which are thought
to act as chemoreceptors and a longer pair which have sensory hair-like structures
(setae). The antennae are often orange in color at their bases. Common rough woodlice
can not roll into a ball for defense as many closely related species can. This species
is sexually dimorphic, with females (and juveniles) mottled and lighter in color.
Females have a brood pouch in which they carry developing young, while males have
a genital projection located near their pleopodia.
- Other Physical Features
- ectothermic
- bilateral symmetry
- Sexual Dimorphism
- sexes colored or patterned differently
Development
This species undergoes direct development with 15-20 recognized stages, beginning
with fertilization. These stages occur through a series of molts and are differentiated
by morphological changes or development of organs. Eggs are carried in the female's
fluid-filled brood pouch where they hatch; after hatching, they are referred to as
mancae. There are two manca stages that take place within the pouch and two that occur
outside of the pouch. Mancae are soft, white, and have only six pairs of legs; the
seventh pair develops after their first molt. The development of the seventh pair
of legs occurs outside of the pouch and, after this, the mancae are considered juveniles.
Juveniles are similar in appearance to adult wood like.
Reproduction
Common rough woodlice reproduce sexually, during warmer spring and summer seasons.
Males insert sperm using their copulatory organ, a modification of their abdominal
legs. This species is polyandrous; females mate with many males and broods have been
shown to have greater than 80% multiple paternity.
- Mating System
- polyandrous
It is possible for common rough woodlice to have one to three broods per year, with
12-36 offspring per brood. Females may survive long enough to breed in multiple seasons,
but often do not. Reproduction typically occurs when the days lengthen and temperatures
rise during spring and summer, and females have been noted to be gravid for an average
of 35 days. Males and females can can be distinguished by their sixth molt, and reach
full sexual maturity within 14-22 months after hatching.
- Key Reproductive Features
- semelparous
- seasonal breeding
- sexual
- fertilization
- ovoviviparous
Males exhibit no parental investment after mating. Females carry eggs and mancae in
a fluid-filled breeding pouch in order to prevent their dessication. Once mancae have
been released there is no further parental involvement.
- Parental Investment
- female parental care
-
pre-fertilization
- provisioning
-
protecting
- female
-
pre-hatching/birth
-
provisioning
- female
-
protecting
- female
-
provisioning
-
pre-weaning/fledging
-
protecting
- female
-
protecting
-
pre-independence
-
protecting
- female
-
protecting
Lifespan/Longevity
Although there is little information regarding lifespan for common rough woodlice
specifically, terrestrial isopods live between 1-5 years on average. It has been suggested
that this species typically lives 2-3 years, though up to 90% die within a month of
emerging from their brooding pouches.
Behavior
Much of this species' behavior is related to its need for an appropriately humid environment;
they will relocate based on whether they currently need more or less water in their
systems. For example, in forest ecosystems, they have been observed in the upper parts
of decidious trees during summer months and in mossy areas around the bases of trees
during autumn months. These woodlice are most active at night and their activity levels
are correlated with wind speed; increased wind speeds (and, so, evaporation rates)
lead to lower levels of activity. They exhibit negative phototaxis, moving away from
lighter (likely warmer and drier) conditions to darker ones, and they speed up their
movements when environmental conditions are outside of an optimal range. Humidity
and temperature also affect whether or not these animals burrow into leaf litter.
This species exhibits thigmokinesis, which means that their movement is reduced when
in contact with other objects. This includes other woodlice; aggregations can help
to protect individuals from dessication and predation.
Home Range
No published information on the home range of this species is available.
Communication and Perception
These woodlice have long antennae with setae, which sense movement, and shorter antennae
which may function as chemoreceptors. They also sense their environments through touch,
as evidenced by their thigmokinetic behavior, which causes reduced movement when in
physical contact with other objects. Common rough woodlice may use pheromones, either
released by feces or produced separately, to find others of their species in order
to create aggregations. They have two compound eyes that can sense light and dark.
- Other Communication Modes
- pheromones
Food Habits
Common rough woodlice are detritivorous, saprophagous (including carrion), mycophagous,
and coprophagous. They prefer decaying organic matter because of the higher population
of microbes within this material. Common rough woodlice consume their own feces in
order to increase copper stores (necessary as their blood contains haemocyanin) and
to retain bacteria that are able to break down nutrients that are not easily absorbed
otherwise. These bacteria are a significant part of their diets. These woodlice also
have endosymbiotic bacteria (
Candidatus Rhabdochlamydia porcellionis
) living in the hepatopancreas, which help with cellulose digestion.
- Primary Diet
- carnivore
- herbivore
- omnivore
- mycophage
- detritivore
- coprophage
- Animal Foods
- carrion
- Plant Foods
- leaves
- roots and tubers
- wood, bark, or stems
- fruit
- Other Foods
- fungus
- detritus
- dung
- microbes
Predation
These woodlice protect themselves from predation by hiding under wood, rocks, leaves
and other detritus. Their bodies are also heavily plated. They also excrete nitrogenous
waste in the form of ammonia gas instead of urine, which may help to ward off would-be
predators. Nevertheless, common rough woodlice have a number of natural predators
such as spiders (including
Dysdera crocata
, known as woodlouse hunters, which feed exclusively on them), small mammals (such
as shrews), birds, centipedes, harvestmen, and ground beetles.
- Anti-predator Adaptations
- cryptic
Ecosystem Roles
Common rough woodlice are detritivores that help with the degradation of organic matter,
such as decaying leaves and wood. In its native regions, this works to quickly return
nutrients to the soil. In some areas with a slower degradation process, introduced
woodlice significantly affect indigenous flora and fauna.
Melanophora roralis
are parasitic flies that lay eggs on common rough woodlice, killing their hosts during
their pupation. Other parasites include spiny headed worms and nematodes. Common rough
woodlice also host intracellular parasitic bacteria in their guts.
Woodlice are susceptible to Iridovirus (IIV) Type 31, which creates crystalline structures
in the host's tissues, lending them a blue color, and leading to death in extreme
infections. This species may also become infected by
Wolbachia
, a bacteria that affects hormone production in males.
Common rough woodlice also have endosymbiotic bacteria that help them to digest plant
matter living in their hepatopancreas.
- Ecosystem Impact
- biodegradation
- Candidatus Rhabdochlamydia porcellionis (Phylum Chlamydiae, Domain Bacteria)
- Melanophora roralis (Family Rhinophoridae, Order Diptera)
- Plagiorhynchus cylindraceus (Class Palaeacanthocephala, Phylum Acanthocephala)
- Chlamydia isopodii sp. (Phylum Chlamydiae, Domain Bacteria)
- Capillaria annulata (Family Trichinellidae, Phylum Nematoda)
- Thaumamermis cosgrovei (Family Mermithidae, Phylum Nematoda)
- Wolbachia sp. (Family Rickettsiaceae, Phylum Proteobacteria)
- Iridovirus (Family Iridoviridae)
Economic Importance for Humans: Positive
Common rough woodlice are decomposers of wood and other organic matter, releasing
minerals, nutrients and other chemicals into their environments. They are also useful
as model organisms in many scientific studies and have been used to test contamination
levels of heavy metals such as cadmium, lead and zinc in soil.
- Positive Impacts
- research and education
Economic Importance for Humans: Negative
In some regions where it has been introduced, this species has had a negative impact
on the niches of the native flora and fauna. These animals eat decaying matter, releasing
nutrients into the soil, but this may not be ideal in regions that have developed
without detritivores present. In regions that have, they may compete with native
detritivore species.
- Negative Impacts
- crop pest
Conservation Status
The conservation status of common rough woodlice has not been evaluated.
Additional Links
Contributors
Cynthia Riggio (author), University of Michigan-Ann Arbor, Jeremy Wright (editor), University of Michigan-Ann Arbor.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oriental
-
found in the oriental region of the world. In other words, India and southeast Asia.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- Ethiopian
-
living in sub-Saharan Africa (south of 30 degrees north) and Madagascar.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- Neotropical
-
living in the southern part of the New World. In other words, Central and South America.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- oceanic islands
-
islands that are not part of continental shelf areas, they are not, and have never been, connected to a continental land mass, most typically these are volcanic islands.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- cosmopolitan
-
having a worldwide distribution. Found on all continents (except maybe Antarctica) and in all biogeographic provinces; or in all the major oceans (Atlantic, Indian, and Pacific.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- terrestrial
-
Living on the ground.
- desert or dunes
-
in deserts low (less than 30 cm per year) and unpredictable rainfall results in landscapes dominated by plants and animals adapted to aridity. Vegetation is typically sparse, though spectacular blooms may occur following rain. Deserts can be cold or warm and daily temperates typically fluctuate. In dune areas vegetation is also sparse and conditions are dry. This is because sand does not hold water well so little is available to plants. In dunes near seas and oceans this is compounded by the influence of salt in the air and soil. Salt limits the ability of plants to take up water through their roots.
- tropical savanna and grassland
-
A terrestrial biome. Savannas are grasslands with scattered individual trees that do not form a closed canopy. Extensive savannas are found in parts of subtropical and tropical Africa and South America, and in Australia.
- savanna
-
A grassland with scattered trees or scattered clumps of trees, a type of community intermediate between grassland and forest. See also Tropical savanna and grassland biome.
- temperate grassland
-
A terrestrial biome found in temperate latitudes (>23.5° N or S latitude). Vegetation is made up mostly of grasses, the height and species diversity of which depend largely on the amount of moisture available. Fire and grazing are important in the long-term maintenance of grasslands.
- forest
-
forest biomes are dominated by trees, otherwise forest biomes can vary widely in amount of precipitation and seasonality.
- marsh
-
marshes are wetland areas often dominated by grasses and reeds.
- urban
-
living in cities and large towns, landscapes dominated by human structures and activity.
- agricultural
-
living in landscapes dominated by human agriculture.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- polyandrous
-
Referring to a mating system in which a female mates with several males during one breeding season (compare polygynous).
- semelparous
-
offspring are all produced in a single group (litter, clutch, etc.), after which the parent usually dies. Semelparous organisms often only live through a single season/year (or other periodic change in conditions) but may live for many seasons. In both cases reproduction occurs as a single investment of energy in offspring, with no future chance for investment in reproduction.
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- internal fertilization
-
fertilization takes place within the female's body
- ovoviviparous
-
reproduction in which eggs develop within the maternal body without additional nourishment from the parent and hatch within the parent or immediately after laying.
- female parental care
-
parental care is carried out by females
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- sedentary
-
remains in the same area
- social
-
associates with others of its species; forms social groups.
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- pheromones
-
chemicals released into air or water that are detected by and responded to by other animals of the same species
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- carrion
-
flesh of dead animals.
- detritus
-
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
- cryptic
-
having markings, coloration, shapes, or other features that cause an animal to be camouflaged in its natural environment; being difficult to see or otherwise detect.
- biodegradation
-
helps break down and decompose dead plants and/or animals
- carnivore
-
an animal that mainly eats meat
- scavenger
-
an animal that mainly eats dead animals
- herbivore
-
An animal that eats mainly plants or parts of plants.
- folivore
-
an animal that mainly eats leaves.
- frugivore
-
an animal that mainly eats fruit
- omnivore
-
an animal that mainly eats all kinds of things, including plants and animals
- mycophage
-
an animal that mainly eats fungus
- detritivore
-
an animal that mainly eats decomposed plants and/or animals
- coprophage
-
an animal that mainly eats the dung of other animals
References
Beaudette, F. 1930. Hints to Poultrymen, Volume 18, Number 10: Miscellaneous Parasites . Ithaca, NY: Cornell University. Accessed January 31, 2013 at http://books.google.com/books?id=o0VPAAAAYAAJ&pg=PT619&lpg=PT623&ots=q4EmCPBTjR&dq=parasite+porcellio+scaber .
Breithaupt, T., M. Thiel. 2011. Chemical Communication in Crustaceans . London: Springer.
Broly, P., R. Mullier, J. Deneubourg, C. Devigne. 2012. Aggregation in woodlice: social interaction and density effects. ZooKeys , 176: 133-144. Accessed January 31, 2013 at http://www.pensoft.net/journals/zookeys/article/2258/ .
Carbines, G., R. Dennis, R. Jackson. 1992. Increased turn alternation by woodlice (Porcellio scaber) in response to predatory spider, Dysdera crocata. Internation Journal of Comparative Psychology , 5/3: 138-144. Accessed March 23, 2012 at http://www.escholarship.org/uc/item/2t8495g5 .
Cole, A., T. Morris. 1980. A new iridovirus of two species of terrestrial isopods, Armadillidium vulgare and Porcellio scaber. Intervirology , 14/1: 21-30. Accessed February 01, 2013 at http://www.ncbi.nlm.nih.gov/pubmed/7203967 .
Cordaux, R., A. Michel-Salzat, D. Bouchon. 2001. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. Journal of Evolutionary Biology , 14: 237-243. Accessed February 01, 2013 at http://rcordaux.voila.net/pdfs/01.pdf .
Den Boer, P. 1962. The Ecological Significance of Activity Patterns in the Woodlouse Porcellio Scaber Latr. (Isopoda). Archives Néerlandaises de Zoologie , 14/3: 283-409. Accessed January 30, 2013 at http://www.ingentaconnect.com/content/brill/anz/1962/00000014/00000003/art00001 .
Duffy, J., M. Thiel. 2007. Evolutionary ecology of social and sexual systems: crustaceans as model . New York, New York: Oxford Universitiy Press.
Friedlander, C. 1964. Thigmokinesis in woodlice. Animal Behaviour , 12: 164-174.
Godet, J., S. Demuynck, C. Waterlot, S. Lemière, C. Souty-Grosset, R. Scheifler, F. Douay, A. Leprêtre, C. Pruvot. 2011. Growth and metal accumulation in Porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Ectotoxicology and Environmental Safety , 74/3: 451-458. Accessed February 01, 2013 at http://www.ncbi.nlm.nih.gov/pubmed/21030086 .
Gunn, D. 1937. The Humidity Reactions of the Woodlouse; Porcellio scaber (Latreille). The Journal of Experimental Biology , 14: 178-186. Accessed January 31, 2013 at http://jeb.biologists.org/content/14/2/178.full.pdf+html .
Harding, P., S. Sutton. 1985. Woodlice in Britain and Ireland: Distribution and Habitat . Great Britain: Lavenham Press. Accessed January 31, 2013 at http://nora.nerc.ac.uk/5276/1/Woodlice.pdf .
Hassal, M., S. Rushton. 1985. The adaptive significance of coprophagous behaviour in the terrestrial isopod Porcellio scaber. Pedobiologia , 28: 169-175.
Hess, R., G. Poinar, Jr.. 1985. Iridoviruses Infecting Terrestrial Isopods and Nematodes. Current Topics in Microbiology and Immunology , 116: 49-76. Accessed February 01, 2013 at http://link.springer.com/chapter/10.1007%2F978-3-642-70280-8_4 .
Hopkin, S., G. Hardisty, M. Martin. 1986. The Woodlouse Porcellio scaber as a 'Biological Indicator' of Zinc, Cadmium, Lead and Copper Pollution. Environmental Pollution (Series B) , 11: 271-290. Accessed January 31, 2013 at http://www.stevehopkin.co.uk/publications/1986_envpollut_11b_271-290.pdf .
IUCN, 2012. "The IUCN Red List of Threatened Species" (On-line). Accessed February 01, 2013 at http://www.iucnredlist.org/search .
Kaufman, K., E. Eaton. 2007. Kaufman Field Guide to insects of North America . New York, N.Y.: Houghton Mifflin Company.
Kostanjsek, R., J. Strus, D. Drobne, G. Avgustin. 2004. 'Candidatus Rhabdochlamydia porcellionis', an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). International Journal of Systematic and Evolutionary Microbiology , 54: 543-549.
Levri, E., B. Coppola. 2004. First report of the acanthocephalan Plagiorhynchus cylindraceus in the terrestrial isopod Porcellio scaber. Comparative Parasitology , 71: 90-91.
McGavin, G. 2000. Insects, Spiders and other Terrestrial Arthropods . London: Dorling Kindersley Limited.
McKenzie, G. 1997. "Woodlice Online" (On-line). Accessed January 31, 2013 at http://www.porcellio.scaber.org/woodlice/expback.htm .
Minor, M. 2011. "Guide to New Zealand Soil Invertebrates" (On-line). Isopoda. Accessed February 24, 2012 at http://soilbugs.massey.ac.nz/isopoda.php .
Nemanic, P. 1975. Fine structure of the compound eye of Porcellio scaber in light and dark adaption. Tissue Cell , 7: 453-468.
Sassaman, C., R. Garthwaite. 1984. The interaction between the terrestrial isopod Porcellio scaber Latreille and one of its Dipteran parasites, Melanophora roralis (L.) (Rhinophoridae). Journal of Crustacean Biology , 4: 595-603.
Sassaman, C. 1978. Mating systems in porcellionid isopods: multiple paternity and sperm mixing in Porcellio scaber latr. Heredity , 41: 385-397. Accessed January 31, 2013 at http://www.nature.com/hdy/journal/v41/n3/abs/hdy1978109a.html .
Shay, M., A. Bettica, G. Vernon, E. Witkus. 1985. Chlamydia isopodii sp. n., an obligate intracellular parasite of Porcellio scaber. Experimental Cell Biology , 53/2: 115-120. Accessed January 31, 2013 at http://www.ncbi.nlm.nih.gov/pubmed/3979656 .
Warburg, M., K. Linsenmair, K. Bercovitz. 1984. The Effect of Climate on the Distribution and Abundance of Iso pods. Symposia of the Zoological Society of London , 53: 339-367. Accessed January 31, 2013 at http://opus.bibliothek.uni-wuerzburg.de/volltexte/2010/4447/pdf/Linsenmair_Climate_Isopods.pdf .
Wolff, C. 2009. The embryonic development of the malactrocan crustacean Porcellio scaber (Isopoda, Oniscidea). Development Genes and Evolution , 219: 545-564.
Zimmer, M., G. Kautz, T. Werner. 2003. Leaf litter-colonizing microbiota: supplementary food source or indicator of food quality for Porcellio scaber (Isopoda: Oniscidea)?. European Journal of Soil Biology , 39: 209-216.
Zimmer, M., T. Werner. 1998. Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber. Journal of Chemical Ecology , 24: 1397-1408.
Zimmer, M. 2002. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biological Reviews , 77: 455-493.
The President and Fellows of Harvard College. 2013. "Common rough woodlouse" (On-line). Boston Harbor
Islands@Harvard
University.
Accessed
January 31, 2013
at
http://insects.oeb.harvard.edu/boston_islands/bugmonth/0811_cmn_rgh_wdls.htm
.
2003. Isopoda. Pp. 249-258 in Grzimek's Animal Life Encyclopedia , Vol. 2, 2 Edition. Farmington Hills, MI: Gale Group.
2009. "Pocellio scaber (crustacean)" (On-line). Global Invasive Species Database. Accessed February 24, 2012 at http://issg.org/database/species/ecology.asp?si=1460&fr=1&sts=&lang=EN .