Geographic Range
Arctic grayling inhabit a wide geographic area that includes the Arctic and Pacific
drainages in Canada, Alaska, and Siberia. Historically, they were found throughout
the Arctic as far west as the Kara River in Russia, as far east as the western shores
of the Hudson Bay in Canada, and as far south as Michigan. Though they no longer occur
naturally in North America apart from Canada and Alaska, the species has been introduced
into some lakes of western mountain states such as Arizona and California and the
upper Missouri River drainage in Montana.
- Biogeographic Regions
- nearctic
- palearctic
- Other Geographic Terms
- holarctic
Habitat
Arctic grayling live in high-elevation, mid to large, cold (8 to 11°C), and clear
freshwater lakes and rivers. They are obligate cool or cold water dwelling species.
They migrate several times per year. In the early spring, individuals migrate from
overwintering habitats to rocky streams for spawning. Individuals then move to summer
feeding areas before finding a suitable wintering spot, where they spend 8 to 9 months
under ice. Arctic grayling typically overwinter in a lake or sections of a stream
that are downstream of feeding areas. Larger fish are usually found in cooler upstream
reaches of the river, while juveniles typically live in downstream and lower reaches
of rivers. A possible explanation for this pattern is that water downstream is typically
warmer than water upstream, helping to speed growth. Another hypothesis is that larger
fish that are upstream have a feeding advantage because they have first access to
drifting prey.
- Habitat Regions
- polar
- freshwater
- Aquatic Biomes
- lakes and ponds
- rivers and streams
Physical Description
Arctic grayling have an elongated, laterally-compressed, and trout-like body. Like
many fish in the family
Salmonidae
, they have short heads, large eyes, small, toothed mouths, and forked tails. Arctic
grayling are approximately 15 to 36 cm long, with an average weight of 1 to 2 kg.
The largest individual on record was around 76 cm long and 3.8 kg. The dorsal surface
of the body is often the darkest, with dark-purple or blue-black to blue-grey coloring.
The sides have tiny scales exhibiting a variety of colors, from iridescent gray to
light greenish blue. Patterns of numerous V-shaped or diamond-shaped spots are also
common. The dorsal fin is sail-like, with as many as 17 to 25 rays, and is sometimes
taller than the width of the fish’s body. They are usually marked with black and a
narrow, vividly colored band on the top edge with orange to bright green spots on
the bottom. The pelvic fins can have bright colors, such as pink or orange stripes.
Grayling that live in the clearest waters tend to exhibit brighter colors. There is
sexual dimorphism in coloration, with males having more orange, light green, and blue
colored scales than females, which have more dull and dark colored scales.
- Other Physical Features
- ectothermic
- heterothermic
- bilateral symmetry
- Sexual Dimorphism
- male more colorful
Development
Arctic grayling fry hatch 2 to 3 weeks after spawning, and they are approximately
1.3 cm long at hatching. The fry immediately move toward the calm and warm shoreline
waters where they will become juveniles at 5 to 10 cm by the end of summer. Fry are
miniature versions of adults. They continue to grow quickly and reach maturity in
3 to 4 years. At this point, they begin to grow much more slowly as they dedicate
more of their annual energy intake to spawning efforts. The growth rate of arctic
grayling is among the fastest for arctic fish in many streams and lakes. Researchers
note that grayling embryos and hatchlings are exposed to increasingly colder temperatures
as they develop. At these life stages, arctic grayling are exposed to microbial bacteria
pathogens that are often temperature and sex-specific and result in behavioral and
immunological responses. While this does not directly affect the sex-determination
of individuals, studies show that male grayling appear to have a sex-specific behavior
or tolerance to warm temperatures that female grayling do not have.
- Development - Life Cycle
- temperature sex determination
Reproduction
Arctic grayling spawn in spring in shallow areas of rivers with moderate current as
well as a gravel or rocky areas with a substrate composed of fine sand sediments.
Spawning in lakes is rare. Arctic grayling alter their behavior to give them better
abilities to spawn and reproduce. During mating season, males defend their spawning
area for up to 7 days against other males. Females do not exhibit agonistic behavior
during this season. During the act of mating, other males will try to beat other males
off prospective mates. Females can also just swim off. Males court females by flashing
their colorful dorsal fins. These fins are also used to brace receptive females to
aid in the mating process. Although they do not excavate a redd (nest) in the substrate,
the act of mating kicks up a large amount of substrate that serves as a sort of nest
for the eggs. The roe (eggs) are left on the bottom of the streambed to mix with the
milt (sperm) released from the males. The female leave and find another prospective
male to mate with and leave the zygotes to be covered by the substrate and to survive
on their own. However, less than 50% of all spawning attempts are actually completed
due to interference by other fish or the female moving away from the male. Arctic
grayling are promiscuous, with males mating several times with several females and
females mating more than once with several males.
- Mating System
- polygynandrous (promiscuous)
Arctic grayling, like most other fish, are oviparous and they lay eggs in the spring,
when ice begins to break up. Depending on the size of the female, she may lay between
1,500 and 30,000 eggs, each around 2.5 mm in diameter. The eggs sink to the bottom
and become lodged between pebbles and gravel. Only about 10% of the fry that hatch
from the eggs will reach adulthood and be able to spawn. When spring approaches, arctic
grayling gather in large groups to "run" upstream to spawning areas.
- Key Reproductive Features
- iteroparous
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- oviparous
Arctic grayling parents generally do not invest much in the young apart from defending
the spawning area.
- Parental Investment
-
pre-fertilization
- provisioning
-
protecting
- male
- female
Lifespan/Longevity
The lifespan of arctic grayling is usually around 18 years for both males and females.
However, individuals in Alaska have been known to live up to 32 years. Most mortality
occurs in eggs, larvae, and fingerlings or in areas where these fish are heavily fished.
Behavior
Much of arctic grayling behavior revolves around strategies that aid survival in the
harsh, uncertain environment of the Arctic. One strategy is migration for food and
spawning. Individuals can use different streams for spawning, development, overwintering,
and summer feeding, although some individuals spend their entire life within a single
section of a stream or lake. They are active during the day.
- Key Behaviors
- natatorial
- diurnal
- motile
- migratory
- sedentary
Home Range
Arctic grayling may move tens of miles on a seasonal or annual basis between spawning,
feeding, and sheltering habitats. Some arctic grayling have been known to travel more
than 160 km (100 miles) in one year.
Communication and Perception
There is no research on communication and perception in arctic grayling, but it is
assumed they have sensory perception similar to other freshwater fish, including chemoreception
and the lateral line system. One form of perception is through chemoreceptors that
can respond to chemical stimuli in the water and act a sense of taste and smell. Another
form of perception is the lateral line system. This system is common in fish and detects
the motion of other fish and prey through changes in current and vibration that are
caused by the other organisms. They are visual predators, reacting to visual cues
to detect and attack prey.
Food Habits
During the brief northern summers, arctic grayling eat drifting aquatic insects, such
as black flies (
Simuliidae
), mayflies (
Ephemeroptera
), stoneflies (
Plecoptera
), and caddisflies (
Trichoptera
). At times, grayling gorge upon the eggs of spawning salmon, smaller fish, or terrestrial
insects that have fallen into the water. They may even eat an occasional vole, lemming,
or shrew. Young arctic grayling feed on zooplankton and eventually transition to feeding
on insect larvae.
- Primary Diet
- carnivore
- Animal Foods
- mammals
- fish
- eggs
- insects
- zooplankton
Predation
Predators of arctic grayling include other fish (
pike
and
trout
), predatory birds (
eagles
and
osprey
), and mammals (
otters
and
mink
).
- Anti-predator Adaptations
- cryptic
Ecosystem Roles
Arctic grayling are one of the top predators in their aquatic habitats. They prey
on a wide variety of insects, fish and other small animals. They are also hosts to
protozoan and metazoan parasites such as
Cystidicoloides tenuissima
and
Pomphorhynchus bulbocoli
.
Economic Importance for Humans: Positive
Arctic grayling are raised commercially for food and fished for sport.
- Positive Impacts
- food
Economic Importance for Humans: Negative
There are no known adverse effects of arctic grayling on humans.
Conservation Status
While arctic grayling are not currently considered endangered, they are sensitive
to pollution in the areas they live and pollution can cause local extirpations. They
are most vulnerable to overfishing, competition, road culverts, mining, agriculture,
and destructive forestry practices. Recent findings indicate that populations of arctic
grayling in North America have been steadily declining and the species is listed as
a candidate for “species of concern” status and may warrant protection under the Endangered
Species Act.
Additional Links
Contributors
Michael Hsieh (author), The College of New Jersey, Keith Pecor (editor), The College of New Jersey.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- introduced
-
referring to animal species that have been transported to and established populations in regions outside of their natural range, usually through human action.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- holarctic
-
a distribution that more or less circles the Arctic, so occurring in both the Nearctic and Palearctic biogeographic regions.
Found in northern North America and northern Europe or Asia.
- polar
-
the regions of the earth that surround the north and south poles, from the north pole to 60 degrees north and from the south pole to 60 degrees south.
- freshwater
-
mainly lives in water that is not salty.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- polygynandrous
-
the kind of polygamy in which a female pairs with several males, each of which also pairs with several different females.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- natatorial
-
specialized for swimming
- diurnal
-
- active during the day, 2. lasting for one day.
- motile
-
having the capacity to move from one place to another.
- migratory
-
makes seasonal movements between breeding and wintering grounds
- sedentary
-
remains in the same area
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- zooplankton
-
animal constituent of plankton; mainly small crustaceans and fish larvae. (Compare to phytoplankton.)
- cryptic
-
having markings, coloration, shapes, or other features that cause an animal to be camouflaged in its natural environment; being difficult to see or otherwise detect.
- food
-
A substance that provides both nutrients and energy to a living thing.
- carnivore
-
an animal that mainly eats meat
- insectivore
-
An animal that eats mainly insects or spiders.
References
Arai, H., D. Mudry. 1983. Protozoan and metzoan parasites of fishes from the headwaters of the Parsnip and McGregor Rivers, British Columbia: a study of possible parasite transfaunations. Canadian Journal of Fisheries and Aquatic Sciences , 40: 1676-1684.
Baccante, D. 2011. Further evidence of size gradients of arctic grayling ( Thymallus arcticus ) along stream length. Journal of Ecosystems and Management , 11: 13-17.
Bleckmann, H., R. Zelick. 2009. Lateral line system of fish. Integrative Zoology , 4: 13-25.
Davis, J., A. Rosemond, S. Eggert, W. Cross, J. Wallace. 2010. Long-term nutrient enrichment decouples predator and prey production. Proceedings of the National Academy of Sciences , 107: 1210126.
Gingerich, A., D. Philipp, C. Suski. 2010. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish. Journal of Comparative Physiology B , 180: 371-384.
Hughes, N., J. Reynolds. 1994. Why do arctic grayling ( Thymallus arcticus ) get bigger as you go upstream?. Canadian Journal of Fisheries and Aquatic Systems , 51: 2154-2163.
Kratt, L., R. Smith. 1980. The analysis of the spawning behaviour of the arctic grayling Thymallus arcticus (Pallas) with observations on mating success. Journal of Fish Biology , 17: 661-666.
Miano, A. 2013. Lake Trout ( Salvelinus namaycush ) and Arctic Grayling ( Thymallus arcticus ) Diet, Population and Migration Dynamics in Arctic Ecosystems. Biology Honors Paper at Connecticut College.
Muzzall, P. 1990. Parasites of arctic grayling, Thymallus arcticus (Pallas), stocked into Michigan lakes. Canadian Journal of Zoology , 68: 596-599.
Sepulveda, A., D. Rutz, S. Ivey, K. Dunker, J. Gross. 2013. Introduced northern pike predation on salmonids in southcentral Alaska. Ecology of Freshwater Fish , 22: 268-279.
Stamford, M., E. Taylor. 2004. Phylogeographical lineages of arctic grayling ( Thymallus arcticus ) in North America: divergence, origins and affinities with Eurasian Thymallus . Molecular Ecology , 13: 1533-1549.
Wedekind, C., G. Evanno, T. Szekely, M. Pompini, O. Darbellat, J. Guthruf. 2013. Persistent unequal sex ratio in a population of grayling (Salmonidae) and possible role of temperature increase. Conservation Biology , 27: 229-234.
Alaska Department of Fish and Game. Arctic Grayling ( Thymallus arcticus ). Anchorage, Alaska: Alaska Department of Fish and Game. 2013. Accessed October 15, 2013 at http://www.adfg.alaska.gov/index.cfm?adfg=arcticgrayling.main .
US Fish & Wildlife Service. Arctic Grayling Recovery. Washington, DC: US Fish & Wildlife Service. 2012. Accessed October 15, 2013 at http://www.fws.gov/redrocks/arcticgrayling/ .