Geographic Range
Oligocottus snyderi
, the fluffy sculpin, is a marine species and is only found along the Pacific Coast
of the United States, Canada and Mexico, where it is native. It is a common species
found throughout the temperate, rocky intertidal zone from as far south as Baja California
and northern Mexico, to as far north as Sitka, Alaska (Freeman 1985). It is often
numerically dominant in subtidal, low intertidal, and mid-intertidal pools in Central
California (Freeman 1985). While it is thought that
O. snyderi
moves between intertidal pools (Yoshiyama 1992), this species does not appear to
migrate long distances. No reports of the introduction of this fish to other regions
have been found in the literature.
- Biogeographic Regions
- nearctic
- pacific ocean
Habitat
Oligocottus snyderi
is most commonly found in temperate, rocky, subtidal and low intertidal pools, though
it is also found frequently in mid-intertidal pools. Due to its numerical domination
in âthe rocky fish assemblageâ, it is suggested that
O. snyderi
, âplays an important role in the functional organization of the intertidal communityâ
(Grossman 1984).
Oligocottus snyderi
is rarely found in high intertidal pools, and it is believed that it almost universally
prefers the stability and cooler temperatures of the low intertidal pools (Freeman
1985, Nakamura 1976b). Experiments have shown that
O. snyderi
strongly prefers low tidal pools with vegetation such as eelgrass,
Phyllospadix schouleri
, and algae such as
Laminaria
,
Iridia
,
Porphyra
, and
Corallina
(Nakamura 1976a). However, because the fluffy sculpin does not inhabit high tide
pools that have this macrophytic cover, it is believed that latitudinal placement
(and/or temperature) plays a more significant role than vegetation in habitat choice
(Nakamura 1976a). Based upon experimental evidence (Nakamura 1976a), it is believed
that the most highly preferred habitat of
O. snyderi
is low to mid-intertidal pools with eelgrass and a sand substrate. Its second preference
was shown to be a rock-sand zone, and its least preferred habitat is the open, sand-only
zone. Fluffy sculpins are capable of aerial breathing for extended periods (hours)
of time, during which their respiration rate seems to remain stable (Yoshiyama 1994).
It is thought that this stable air breathing may be a response to the preference of
O. snyderi
for vegetated cover, which may expose it to frequent reductions in low-oxygen waters
at night, due to respiration by the covering plants (Yoshiyama 1994).
Fluffy sculpins are believed to be stenothermal (Moring 1981), and it is suggested
that this requirement for a stable temperature range restricts this species to low
intertidal pools, and explains the dominance of this species in tidal pools from Central
California to British Columbia, where the temperature range is less extreme than in
areas further to the north or south. Laboratory tests have demonstrated that
O. snyderi
has less tolerance for long-term increases in heat exposure than does its close relative
Oligocottus maculosus
, which resides is the high intertidal zone (Nakamura 1976b). This evidence supports
the observed preference of
O. snyderi
for the lower, more stable pools and may support hypotheses that
O. snyderi
is more successful in northerly climates. Interestingly, Zamzow found that fish,
including
O. snyderi
, in low intertidal pools have fewer ultraviolet processing compounds than species
that occupy the high intertidal zone. The reduction in these compounds may be associated
with the preference of
O. snyderi
for more vegetative cover and lower tidal pools (Zamzow 2003).
The depth range of
O. snyderi
is considered less than 0 meters because it inhabits the intertidal and subtidal
zones (FishBase), which are by nature fairly shallow. However, within the context
of a particular pool, it appears that
O. snyderi
is not restricted in terms of depth. Experiments that imposed simulated tidal fluctuations
on individuals demonstrated that, even during tidal changes, fluffy sculpins did not
alter their vertical position (Nakamura 1976a). However, fluffy sculpins have also
been described as a âbottom dwelling carnivoresâ (Nakamura 1976b), implying that in
a natural setting,
O. snyderi
may tend to move along the bottom of pools under the cover of vegetation to feed.
- Habitat Regions
- temperate
- saltwater or marine
- Other Habitat Features
- intertidal or littoral
Physical Description
Oligocottus snyderi
is a small cottid, approximately 8.9 cm in length (Oregon State University, 2003b),
though it has also been described as ranging from 13 to 101 mm in length (Moring,
1981), and as having a mean length of 47 to 48 mm (Yoshiyama, 1980). It is hypothesized
that fluffy sculpins in northern ranges grow to be larger due to more ideal environmental
conditions (Freeman, 1985).
Oligocottus snyderi
has no scales, but rather has a âfluffy fleshâ behind the dorsal fin for which it
gets its name (Oregon State University, 2003b).
Oligocottus snyderi
has 7 to 9 dorsal spines, 17 to 20 dorsal soft rays, no anal spines, 12 to 15 anal
soft rays, and a rounded caudal fin (FishBase, 2004). A particularly interesting
physical trait of
O. snyderi
is the prehensile first anal ray found on males, which is used to clasp females during
copulation (Morris, 1956). Fluffy sculpins have been found to live from 1 to 2+ years,
depending on study location sites. They were found in one study to have an average
body mass of 8.0 plus or minus 0.3 grams (Yoshiyama, 1994). Because they have no
scales, they are more difficult to age (must use a vertebral aging method), and relatively
little is known of their early life history (Nakamura, 1976b).
Oligocottus snyderi
is close morphologically to
Oligocottus maculosus
, the tidepool sculpin, which is abundant in the high intertidal zone of the east
Pacific shore. However,
O. maculosus
is distinguishable by its larger size (Yoshiyama, 1980), its habitation of the high
intertidal zone, by its color and pigmentation, and by the number and rows of cirri
on the lateral body surface (Nakamura 1976b). Though these two species share similar
morphology and their habitats slightly overlap vertically, they do not appear to compete
for energy or space resources, due to a distinct partitioning of resources. However,
this resource partitioning does suggest that competition for resources between these
two species drove their evolution in the past, which may have resulted in their current
âniche complementarityâ (Yoshiyama, 1980).
- Other Physical Features
- ectothermic
- bilateral symmetry
- Sexual Dimorphism
- male larger
- ornamentation
Development
It has been stated that the life histories of intertidal fishes, and especially cottids,
are not well-understood (Freeman, 1985). In general, it is suggested that fluffy
sculpins mature early and are short-lived (Freeman, 1985). It is also thought that
the life history and development of
Oligocottus snyderi
is intricately connected to its fluctuating tidal environment. It has been demonstrated
that the growth of
O. snyderi
is influenced by seasonal fluctuations in nutrients caused by upwellings along the
East Pacific Coast (Freeman, 1985). Instantaneous growth rates in fluffy sculpins
were shown to be highest during the nutrient rich upwellings (April to August) and
lowest during the low productivity Ocean-Davidson current period (October to February)
(Freeman, 1985).
Fluffy sculpins develop through larval, post larval, juvenile and adult stages. Eggs
are fertilized internally (Morris, 1956), are deposited on rocks, and are guarded
by the males (Oregon State University, 2003b). Further details regarding egg deposition
and hatching were not found in the literature. The diagnostic characteristics of
the larval stage in
O. snyderi
are a âpatch of parietal spines; 10 to 12 spines that develop along preopercular
margin; and 8 to 10 accessory spines that form anteriorly at the bases of the preopercular
spinesâ (FishBase, 2004).
Oligocottus snyderi
larvae are distinguished from
O. maculosus
larvae by a âbubble of skin interior to the origin of the dorsal finfold that is
unpigmented and less obviousâ (FishBase, 2004). Additionally, the larval head and
nape are lightly pigmented (FishBase, 2004). It is believed that larval metamorphosis
is timed to coincide with the nutrient rich upwellings that occur along the East Pacific
Coast from April to August (Freeman, 1985). There is little information on the post-larval
stages of
O. snyderi
and it is not known how post-larvae âsettleâ in particular pools, but the data suggests
that temperature plays a factor in the choice of pools, and that an internal threshold
temperature is determined in the larval or post-larval stage (Nakamura 1976b). It
is believed that juveniles mature and are capable of spawning within their first year
(Freeman, 1985), and the data suggests that males exceed females in growth during
their second year (Freeman, 1985; Morris 1956).
- Development - Life Cycle
- metamorphosis
Reproduction
According to Grossman, there is no substantial reproductive data on intertidal fishes
or cottids (Grossman, 1984). Morris (1956), in studying the anatomy of the male
O. snyderi
clasping anal spine did observe mating in a laboratory setting. He stated that,
âno definite patterns of display or courtship were apparent and copulation took place
in an atmosphere of carefree promiscuityâ (Morris, 1956). Of course, this behavior
could be solely attributed to the artificial setting.
Oligocottus snyderi
reproduces using internal fertilization, and the males have a developed penis and
clasping anal ray that assist in this process (Morris, 1956). The first anal ray
on the males is set apart and is prehensile. The male âbends this ray anterolaterally
around the femaleâ and uses it to hold the two fish together as they mate. This ray
can bend to the right or left and thus male fluffy sculpins are able to approach females
from either side. It is suggested that clasper flexing is stimulated by visual or
touch stimuli (Morris, 1956). Morris witnessed mating taking place away from the
substrate and lasting 4 to 5 seconds, again in a laboratory setting. Internally fertilized
eggs are laid on rocks and are guarded by the males (Oregon State University, 2003b).
It is hypothesized that most fluffy sculpins are large enough to spawn within their
first year, but it is not clear how many survive to do so (Freeman, 1985). The literature
suggests that the reproductive cycle in
O. snyderi
females is strongly coordinated with the nutrient upwelling and downwelling cycles
that occur along the East Pacific Coast (Freeman, 1985). Freeman found that ovarian
recrudescence occurs in females during the downwelling period (October to February)
during which time the water is not as nutrient rich and instantaneous growth rates
are slow, but during which time females are observed to eat more than males. It is
assumed that this excess energy is used in egg production (Freeman, 1985). In Freemanâs
study at Dillon Beach, CA, strong seasonal fluctuations in the feeding and reproduction
of fluffy sculpins were observed. Due to the fact that females contain vitellogenic
oocytes from October through May, Freeman hypothesizes that females spawn more than
once per year and do so during the winter and spring. Following this hypothesis,
larval metamorphosis, and possibly recruitment, could be timed to occur with the seasonal
nutrient upwellings (Freeman, 1985). It is also hypothesized that reproductive success
rates may improve as males age because of their increased body and clasper size (Freeman,
1985).
A detailed study of the follicular development in female fluffy sculpins has been
conducted by Grossman (1984), who found that follicular development is consistent
with that of other oviparous teleosts. Two to four clutches were observed in females
between October and May, and Grossman hypothesizes that the female breeding period
may last from six months (November to April) to eight months (October to May); rapid
follicular enlargement was seen in September. The fact that clutches found in females
during this time were in differing stages of development is evidence of asynchronous
reproduction and the multiple spawning events also described by Freeman.
- Key Reproductive Features
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- oviparous
Oligocottus snyderi
males guard the eggs deposited by females.
- Parental Investment
-
pre-fertilization
- provisioning
-
protecting
- female
-
pre-hatching/birth
-
protecting
- male
-
protecting
Lifespan/Longevity
The lifespan and longevity of O. snyderi appears to be strongly affected by its environment. While one study in the wild found only two age classes of fluffy sculpin present, 0+ and 1+ (Freeman, 1985), another study found individuals of 2+ years (Moring, 1981). In captivity, O. snyderi has survived for more than two years (Yoshiyama 1992). Because they have no scales, they are more difficult to age (must use a vertebral aging method), and relatively little is known of their early life history (Nakamura, 1976b).
Freeman hypothesized that the shorter lifespan (1.5 years) and the small size of the
fluffy sculpins he studied might be the result of the strong seasonal fluctuations
at his field site. He suggests that the further north the species is located (within
its ideal range from Central California to British Columbia) the longer its lifespan
will be due to reduced temperature fluctuation. There is also reduced exposure to
ultraviolet radiation further north, which could contribute to the increased lifespan
of more northerly populations, though there is not concrete evidence for this (Zamzow,
2003).
Behavior
As in many other intertidal fishes, a homing mechanism has been documented in
O. snyderi
, and it is suggested that fluffy sculpins occupy home ranges of more than one pool
(Yoshiyama, 1992). It is suggested that the fluctuating intertidal environment demands
that fishes, such as
O. snyderi
be able to find and recognize safe spots (Yoshiyama, 1992). Fluffy sculpins have
been observed to return to their home pools even if it is necessary to cross exposed,
âinhospitableâ habitat to do so (Yoshiyama, 1992). They have also returned to home
pools even if transplanted into other equally suitable habitats (Yoshiyama, 1992).
However, for
O. snyderi
it seems that âsite fidelity and homing success depend upon local topographic characteristics
and other environmental factors (e.g. exposure to wave action, frequency of habitat
perturbations)â (Yoshiyama, 1992). For example, evidence suggests that
O. snyderi
may lose the drive to return home if unsuccessful for a certain period of time (Yoshiyama,
1992). Also, it is not clear whether fluffy sculpins simply âwanderâ back home, or
if they rely upon distinct visual or olfactory cues (Yoshiyama, 1992). In general,
larger individuals seem to be more successful at homing than are smaller individuals.
It is not clear how young may use homing to move through the intertidal zone, though
the absence of dead young in unsuitable habitats (such as the high intertidal pools)
suggests that pools are non-randomly selected, and that site fidelity is established
in the post-larval stage, possibly by temperature cues (Yoshiyama, 1992). Temperature
does seem to be an overarching factor in habitat selection by
O. snyderi
(Freeman, 1985; Moring, 1981; Grossman, 1984; Nakamura, 1976a, b; Yoshiyama, 1992).
In regards to interspecies relationships,
O. snyderi
displays no competitive or aggressive behavior in the presence of the closely related
tidepool sculpin,
Oligocottus maculosus
. The spatial habitat of the two species overlaps slightly in the mid-intertidal
range. However, they eat different food and prefer different habitats. When occupying
a tank together, they show no signs of aggression (Nakamura, 1976a).
Perhaps most interesting behaviorally is the ability of
O. snyderi
to breathe aerially. The literature states that only a few marine fish families
(Stichaeida, Pholididae, and Cottidae) are air breathing (Yoshiyama and Cech, 1994).
However, several temperate zone rocky intertidal fish are able to breathe aerially
(Yoshiyama and Cech, 1994), presumably due to their need to adapt to the constant
change in tidally influenced environments. Both
O. snyderi
and
O. maculosus
can breathe for extended periods of time out of water (hours).
O. snyderi
is a particularly interesting air breather because its respiratory rates in air and
in water are similar and stable, whereas the closely related
O. maculosus
has a greatly increased respiration rate out of water (Yoshiyama and Cech, 1994).
This seems counterintuitive, as
O. snyderi
occupies the more stable subtidal and low intertidal zones, which do not fluctuate
in water level or temperature as greatly as do the high intertidal zones in which
O. maculosus
lives. However, the strong affinity that
O. snyderi
has for vegetative cover indicates that it may inhabitat pools that experience low
oxygen levels at night, when photosynthetic rates are low (Yoshiyama and Cech, 1994).
Low oxygen levels, in turn, may demand an increase in air breathing. No information
in the literature was found detailing the nocturnal behavior of
O. snyderi
.
- Key Behaviors
- natatorial
- motile
Home Range
The home range of
O. snyderi
is hypothesized to encompass multiple intertidal pools (Yoshiyama and Cech, 1994).
Communication and Perception
The literature suggests that fluffy sculpins do communicate with mates, as is evident by malesâ use of their claspers during intercourse (Morris, 1956). The extent to which communication occurs during mating is unclear, but males use their claspers to hold onto females during the internal fertilization process. While the literature does not suggest how mates find each other, it is assumed that they use visual perception channels to some extent.
Communication and perception between O. snyderi and its physical surroundings is evident in the homing ability of the species. It appears that O. snyderi uses pool temperature to determine whether it is in its appropriate pool range (Nakamura, 1976). However, it would seem that O. snyderi must utilize homing indicators in addition to temperature, as the species is able to distinguish between its home pool and other pools that are similar in temperature and overall habitat quality (Yoshiyama, 1992). It is suggested in the literature that visual and olfactory perception may assist the fluffy sculpins in homing (Yoshiyama, 1992). Furthermore, larger individuals were significantly better at homing than were smaller individuals (Yoshiyama, 1992), implying that visual and olfactory sensory abilities may increase with body mass. It is interesting to note that O. snyderi has been observed to lose its homing drive after repeated failed homing attempts (Yoshiyama, 1992), indicating that sensory systems, whether olfactory or visual, may adjust to stimuli from new pools given time.
In terms of finding and catching prey,
O. snyderi
has been observed directly charging prey in a laboratory setting (Yoshiyama, 1980).
It is assumed that visual perception of prey plays an important role, though it is
possible that additional perception/communication channels are utilized.
Food Habits
The food habits of
Oligocottus snyderi
are well-documented (Freeman, 1985; Yoshiyama, 1980). The diet of
O. snyderi
consists primarily of gammarid amphipods and polychaetes, though diet shifts occur
in conjunction with nutrient upwellings. A greater diversity of prey are captured
and eaten during nutrient upwellings (Freeman. 1985).
Oligocottus snyderi
appears to be the dominant consumer of gammarid amphipods in the subtidal and low
intertidal zones (Freeman, 1985). Analysis of stomach contents has revealed that
larger fluffy sculpin individuals prey upon shrimp and crabs, and eat a greater diversity
of food in general (Freeman, 1985). Freeman's study found that gammarids compose
a larger percentage of the female diet than the male diet, though alternate studies
did not report this. Additionally, Freeman found that males ate a greater diversity
of food.
In a laboratory setting,
O. snyderi
captured prey by charging it directly, whereas
O. maculosus
was more covert in its hunting (Yoshiyama, 1980). Yoshiyama hypothesizes that this
results in
O. snyderi
consuming fewer shrimp than does
O. maculosus
(Yoshiyama, 1980). In turn, he suggests that the development of these slightly different
predatory strategies and dietary compositions contributes to the ability of these
two species to live in such close proximity to one another without intense competition.
- Primary Diet
-
carnivore
- eats non-insect arthropods
- vermivore
- Animal Foods
- aquatic or marine worms
- aquatic crustaceans
- other marine invertebrates
Predation
While anecdotal evidence of predation of
O. snyderi
by birds and larger fish was found, no documentation of specific predators was found
in the literature.
Ecosystem Roles
While the numerical dominance of O. snyderi in subitdal and low to mid-intertidal pools indicates that it plays a signifant role in the funtioning of these highly fluctuating and specialized ecosystems, no studies investigating the specific role of fluffy sculpins in these ecosystems were found in the literature.
Economic Importance for Humans: Positive
It has been suggested that O. snyderi may be a suitable and/or desirable ornamental fish (Oregon State University, 2003a), but no detailed evidence has been found in the literature.
Oligocottus snyderi is intrinsically beneficial to humans because it contributes to the biodiversity and ecosystem functioning of the intertidal zone, which in turn supports the highly productive neritic zone of the Pacific Coast of North America. This is a highly productive ecological region that supports critical fisheries and the larger oceanic ecosystem as a whole.
Economic Importance for Humans: Negative
There are no known adverse effects of O. snyderi on humans.
Conservation Status
Oligocottus snyderi is not listed on any of the conservation status sites.
Other Comments
Oligocottus snyderi Greeley was first described in 1898, in Jordan and Evermannâs, The Fishes of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America north of the Isthmus of Panama (FishBase, 2004).
The author noted that multiple unpublished doctoral dissertations were referenced
in the literature. These sources were unaccessible to the author, but they may provide
additional and/or more current information on the life history and behavior of
Oligocottus snyderi
.
Additional Links
Contributors
George Hammond (editor), Animal Diversity Web.
Lauren Theodore (author), University of Michigan-Ann Arbor, William Fink (editor, instructor), University of Michigan-Ann Arbor.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Pacific Ocean
-
body of water between the southern ocean (above 60 degrees south latitude), Australia, Asia, and the western hemisphere. This is the world's largest ocean, covering about 28% of the world's surface.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- benthic
-
Referring to an animal that lives on or near the bottom of a body of water. Also an aquatic biome consisting of the ocean bottom below the pelagic and coastal zones. Bottom habitats in the very deepest oceans (below 9000 m) are sometimes referred to as the abyssal zone. see also oceanic vent.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- intertidal or littoral
-
the area of shoreline influenced mainly by the tides, between the highest and lowest reaches of the tide. An aquatic habitat.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- sexual ornamentation
-
one of the sexes (usually males) has special physical structures used in courting the other sex or fighting the same sex. For example: antlers, elongated tails, special spurs.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- internal fertilization
-
fertilization takes place within the female's body
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- carnivore
-
an animal that mainly eats meat
- natatorial
-
specialized for swimming
- motile
-
having the capacity to move from one place to another.
References
FishBase, 2004. "Oligocottus snyderi (species summary)" (On-line). Accessed October 22, 2004 at http://www.fishbase.org/Summary/SpeciesSummary.cfm?ID=4131&genusname=Oligocottus&speciesname=snyderi .
Freeman, M., N. Neally, G. Grossman. 1985. Aspects of the life history of the fluffy sculpin, Oligocottus snyderi . Fishery Bulletin , 83 (4): 645-656.
Grossman, G., V. de Vlaming. 1984. Reproductive ecology of an intertidal sculpin, Oligocottus snyderi. Journal of Fish Biology , 25: 231-240.
Moring, J. 1981. Seasonal Changes in a Population of the Fluffy Sculpin Oligocottus snyderi from Trinidad Bay, California, USA. California Fish and Game , 67(4): 250-253.
Morris, R. 1956. Clasping mechanism of the cottid fish, Oligocottus snyderi Greeley. Pacific Science , 10: 314-317.
Nakamura, R. 1976. Experimental Assessment of Factors Influencing Micro Habitat Selection by Two Tide Pool Fishes, Oligocottus maculosus and Oligocottus snyderi. Marine Biology , 37(1): 97-104.
Nakamura, R. 1976. Temperature and the Vertical Distribution of Two Tide Pool Fishes, Oligocottus maculosus and Oligocottus snyderi. Copeia , (1): 143-152.
Oregon State University, 2003. "Fluffy Sculpin" (On-line). Accessed October 22, 2004 at http://hmsc.oregonstate.edu/projects/msap/PS/masterlist/fish/fluffysculpin.html .
Oregon State University, 2003. "Potential Ornamental Aquaculture Species" (On-line). Accessed October 22, 2004 at http://hmsc.oregonstate.edu/projects/msap/PS/topornamentals.html .
Oregon State University, 1998. "The Tide Pool Page : Sculpins" (On-line). Accessed October 22, 2004 at http://hmsc.oregonstate.edu/projects/rocky/sculpin.html .
University of Washington Fish Collection, 1996. "Family Cottidae, Sculpins" (On-line). Accessed October 22, 2004 at http://artedi.fish.washington.edu/FishKey/cott.html .
Yoshiyama, R., J. Cech. 1994. Aerial respiration by rocky intertidal fishes of California and Oregon. Copeia , (1): 153-158.
Yoshiyama, R., M. Philippart, T. Moore, J. Jordan, C. Coon, L. Schalk, C. Valpey, I. Tosques. 1992. Homing behavior and site fidelity in intertidal sculpins. Journal of Experimental Marine Biology and Ecology , 160: 115-130.
Yoshiyama, R. 1980. Food habits of three species of rocky intertidal sculpins. Copeia , (3): 515-525.
Zamzow, J. 2003. Ultraviolet-absorbing compounds in the mucus of temperate Pacific tidepool sculpins: variation over local and geographic scales. Marine Ecology Progress Series , 263: 169-175.