Geographic Range
Euprymna scolopes
is a sepiolid squid endemic to the oceanic habitats surrounding the Hawaiian Islands.
This squid can greatly affect the relative abundance and geographic distribution of
its bacterial symbiont
Vibrio fischeri
.
- Biogeographic Regions
- pacific ocean
Habitat
Euprymna scolopes
is found in warm, shallow coastal waters 2-4 cm deep. This is unusual because most
sepiolid
squids reside in very deep water.
Euprymna scolopes
is often seen laying its eggs on the foundations of coral ridges. During the day,
these squid are buried in the sand. At night, they emerge and wade through the sand
with their bioluminescent light organ which allows them to see and hunt in the dark.
- Habitat Regions
- tropical
- saltwater or marine
Physical Description
Euprymna scolopes
is one of the smallest and slimmest
sepiolid
squids. The mantle plus tentacles measure an average of 35 mm (1.4 in) in length,
and weighs an average of 2.76 grams (0.09 oz). The birth mass of a hatchling is an
average 0.005 grams (0.00018 oz). Males have slightly larger suckers than females,
with thinner posterior mantles. Both sexes have a pair of unique paddle shaped fins
that aid in swimming. A feature unique to
Euprymna scolopes
is the bilobed and bioluminescent light organ present inside the squid’s mantle cavity.
This organ, which functions through its interaction with its symbiotic partner
Vibrio fischeri
, provides light, allowing the squid to hunt its prey at night. This squid also possesses
metabracial vesicles, which function as the eyes of this bobtail squid. The vesicles
allow the squid to perceive and manipulate the amount of light it can give off, so
the squid can camouflage itself in a process known as counterillumination.
- Other Physical Features
- ectothermic
- heterothermic
- bilateral symmetry
- Sexual Dimorphism
- sexes shaped differently
Development
Euprymna scolopes
develops rapidly and grows exponentially. After copulation, there is a 18-26 day
embryonic period. The planktonic hatchling first emerges from the egg, and is initially
aposymbiotic, meaning it cannot use its light organ. After several days, the hatchling
develops into a planktonic paralarva that can partially make use of the light organ.
The paralarva develops into a juvenile after ten days, and becomes mature enough to
travel into shallower waters. After 130 days, when the squid is a subadult, the light
organ fully functions for hunting and camouflage. The squid will have little to no
further growth after 180 days. Male and female organisms, which occur in equal numbers,
reach sexual maturation 60 days after hatching. Temperature may be a factor in the
time to reach full sexual maturity. Interaction with
Vibrio fischeri
is not required for normal development and growth.
- Development - Life Cycle
- metamorphosis
Reproduction
There is no information on the mating system of Euprymna scolopes .
Mating is initiated by the male, which grabs the female and places its spermatophore in the female's mantle. The female's mantle will become larger as it is filled with eggs. Mating lasts 30-50 minutes, and occurs mostly at night. Studies have shown that rainfall increases the amount of breeding. There are no specific seasonal breeding intervals for this squid. Females tend to lay eggs in the morning in shallow areas on coral ridges. Clutch sizes vary between 50-200 eggs. It takes an average 30 minutes to lay each clutch of eggs. The number of clutches each female lays varies greatly. After females are finished laying eggs, they cover them with sand and then depart, leaving the offspring to fend for themselves.
Average number of offspring 100-150
- Key Reproductive Features
- iteroparous
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- oviparous
- sperm-storing
The female lays clutches of eggs and covers the eggs with sand after which there are no interactions.
- Parental Investment
-
pre-hatching/birth
-
protecting
- female
-
protecting
Lifespan/Longevity
Euprymna scolopes
has a lifespan that averages 2-3 months in the wild and 3-5 months in captivity.
Behavior
Euprymna scolopes is most active between dusk and dawn. During this time the organism captures and consumes its prey. Although nocturnal, E. scolopes can still be active in daylight. When not hunting, E. scolopes usually buries itself in the sand substrate or is covered in at least a small layer of sand to camouflage itself from predators. This species also uses counterillumination, another form of camouflage where the squid controls the amount of light from the light organ to match the light emitted from the light source in the area.
Euprymna scolopes
is a solitary organism, and individuals try to separate themselves from each other
rather than fighting and physically competing.
- Key Behaviors
- natatorial
- nocturnal
- motile
- solitary
Communication and Perception
Euprymna scolopes
has a symbiotic relationship with a bioluminescent marine bacterium called
Vibrio fischeri
. This mutualistic relationship begins early in the life stages of the squid and development
of the light organ results. The squid controls the amount and timing of the bioluminescence
given off by the bacteria. When the bacteria are found outside of this mutualistic
relationship the strength of the light given off is not nearly as strong as it is
when it is housed inside the light organ of
E. scolopes
. This light organ is generally used for a specialized behavior known as counterillumination,
which allows the organism to camouflage themselves and avoid predators.
- Other Communication Modes
- photic/bioluminescent
- Perception Channels
- polarized light
- tactile
- chemical
Food Habits
The primary component of the adult
E. scolopes
diet is mysid shrimp, and younger squids will also consume crustaceans in the genus
Artemia
.
Euprymna scolopes
is a cryptic "sit and wait" predator. The squid buries itself in the sand with its
tentacles and wait for prey to pass by.
Euprymna scolopes
attacks by aiming all the arms at the prey and strikes using the two tentacles. If
the squid misses the prey it remains buried and waits for another organism.
- Primary Diet
-
carnivore
- eats non-insect arthropods
- Animal Foods
- aquatic crustaceans
Predation
As previously mentioned,
Euprymna scolopes
uses counterillumination to camouflage from predators. Another defense mechanism
is burying itself in an outer covering made of sand. Last, the squid releases an
amount of ink when they sense a stimuli indicating the presence of a predator. The
pool of ink is used to deceive the predator and prevent attack by resembling the shape
of the squid. Known predators of
E. scolopes
include lizardfish (family
Synodontidae
), barracuda (genus
Sphyraena
), and Hawaiian monk seal (
Monachus schauinslandi
).
- Anti-predator Adaptations
- cryptic
Ecosystem Roles
Euprymna scolopes has a mutualistic relationship with the marine bacteria Vibrio fischeri , making the squid bioluminescent.
Although they are inhabitants of areas near coral reefs, there is no evidence to suggest
Euprymna scolopes
has an effect or relationship on the maintenance of the community around the reef.
Economic Importance for Humans: Positive
There is no information indicating any positive effects by Euprymna scolopes on humans.
Economic Importance for Humans: Negative
There are no known negative effects of Euprymna scolopes on humans.
Conservation Status
Euprymna scolopes is classified by IUCN as Data Deficient because of the uncertain status of its taxonomy (genus and species).
Additional Links
Contributors
Eric Hasbun (author), The College of New Jersey, Will Wardell (author), The College of New Jersey, Keith Pecor (editor), The College of New Jersey, Renee Mulcrone (editor), Special Projects.
- Pacific Ocean
-
body of water between the southern ocean (above 60 degrees south latitude), Australia, Asia, and the western hemisphere. This is the world's largest ocean, covering about 28% of the world's surface.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- tropical
-
the region of the earth that surrounds the equator, from 23.5 degrees north to 23.5 degrees south.
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- benthic
-
Referring to an animal that lives on or near the bottom of a body of water. Also an aquatic biome consisting of the ocean bottom below the pelagic and coastal zones. Bottom habitats in the very deepest oceans (below 9000 m) are sometimes referred to as the abyssal zone. see also oceanic vent.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- sperm-storing
-
mature spermatozoa are stored by females following copulation. Male sperm storage also occurs, as sperm are retained in the male epididymes (in mammals) for a period that can, in some cases, extend over several weeks or more, but here we use the term to refer only to sperm storage by females.
- natatorial
-
specialized for swimming
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- solitary
-
lives alone
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- photic/bioluminescent
-
generates and uses light to communicate
- polarized light
-
light waves that are oriented in particular direction. For example, light reflected off of water has waves vibrating horizontally. Some animals, such as bees, can detect which way light is polarized and use that information. People cannot, unless they use special equipment.
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- cryptic
-
having markings, coloration, shapes, or other features that cause an animal to be camouflaged in its natural environment; being difficult to see or otherwise detect.
- carnivore
-
an animal that mainly eats meat
References
Archetti, M., N. Pierce, M. Hoffman, I. Scheuring, M. Frederickson, D. Yu. 2011. Economic game theory for mutualism and cooperation. Ecology Letters , 14: 1300-1312.
Boettcher, J., E. Ruby. 1995. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. Journal of Bacteriology , 4: 1053-1058. Accessed March 16, 2012 at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC176701/pdf/1771053.pdf .
Boettcher, K., E. Ruby. 1990. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes . Journal of Bacteriology , 172: 3701-3706. Accessed January 19, 2013 at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC213346/pdf/jbacter00121-0177.pdf .
Fleisher, K., J. Case. 1995. Cephalopod predation facilitated by dinoflagellate luminescence. Biology Bulletin , 189: 263-271. Accessed January 19, 2013 at http://www.biolbull.org/content/189/3/263.full.pdf .
Hanlon, R., M. Claes, S. Ashcraft, P. Dunlap. 1997. Laboratory culture of the sepiolid squid Euprymna scolopes : a model system for bacteria-animal symbiosis. Biological Bulletin , 192: 364-374. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/1997/Hanlon_Dunlap_1997_BiolBull.pdf .
Jones, B., M. Nishiguchi. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry. Marine Biology , 144: 1151-1155. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/2004/Jones_Nishiguchi_2004_Biol.pdf .
Kimbell, J., M. McFall-Ngai, G. Roderick. 2002. Two genetically distinct populations of bobtail squid, Euprymna scolopes , exist on the island of O‘ahu. Pacific Science , July 2002: 347-355. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/2002/Kimbell_McFall-Ngai_2002_PacSci.pdf .
Lee, P., M. McFall-Ngai, P. Callaerts, H. Gert de Cout. 2009. The Hawaiian bobtail squid ( Euprymna scolopes ): a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods. Cold Spring Harbor Protocols , 11: 1-18. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/2009/Lee_GertdeCouet_2009_ColdSpringHarbProtoc_emerging.pdf .
Lemus, J., M. McFall-Ngai. 2000. . Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri . Applied and Environmental Microbiology , September 2000: 4091-4097. Accessed January 19, 2013 at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC92263/ .
McFall-Ngai, M., E. Ruby. 1998. Sepiolids and Vibrios: when they first meet. BioScience , 48: 257-265. Accessed January 19, 2013 at http://www.jstor.org/discover/10.2307/1313352?uid=3739832&uid=2&uid=4&uid=3739256&sid=47698784551227 .
Montgomery, M., M. McFall-Ngai. 1993. Embryonic development of thelight organ of the sepiolid squid Euprymna scolopes Berry. Biological Bulletin , 3: 296-230.
Moynihan, M. 1983. Notes on the behavior of Euprymna scolopes . Behaviour , 85: 25-41. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/1983/Moynihan_1983_Behavior.pdf .
Nyholm, S., M. McFall-Ngai. 1998. Sampling the light-organ microenvironment of Euprymna scolopes : description of a population of host cells in association with the bacterial symbiont Vibrio fischeri . Biological Bulletin , 195: 89-97. Accessed January 19, 2013 at http://www.biolbull.org/content/195/2/89.full.pdf+html .
Ruby, R., K. Ho Lee. 1998. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Applied and Environmental Biology , 3: 805-812. Accessed January 19, 2013 at http://aem.asm.org/content/64/3/805.full.pdf+html .
Shears, J. 1988. The use of a sand-coat in relation to feeding and diel activity in the sepiolid squid Euprymna scolopes . Malacologia , 29: 121-133. Accessed January 19, 2013 at http://www.medmicro.wisc.edu/labs/mcfall_ruby_papers/pdf/1988/Shears_1988_Malacologia.pdf .
Visick, K., M. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. Journal of Bacteriology , April 2000: 1779-1787.