Geographic Range
Tabanus lineola
has been found to exist across all of the United Sates and Canada. This species
is principally found in coastal regions across eastern and southern United States.
Tabanus lineola
is present in great density in places such as Ohio, Michigan, Alabama, and South
Carolina. This species is also commonly found along the coast of New Jersey and Georgia.
- Biogeographic Regions
- nearctic
Habitat
Tabanus lineola
mostly resides in coastal salt marshes and wetlands. The majority of flies are found
1.5 to 3 feet from the surface of the salt marsh.
Tabanus lineola
temporarily spends time on its hosts which include humans and several domesticated
animals such as horses and hogs.
- Habitat Regions
- temperate
- terrestrial
- saltwater or marine
- Aquatic Biomes
- coastal
- Wetlands
- marsh
Physical Description
Tabanus lineola
is a striped, green-headed horse fly. The length of this species is approximately
12 to 15 mm.
Tabanus lineola
weighs approximately 50 milligrams and its total volume of blood accounts for about
20% of this mass. They have large, bright green eyes, which usually feature a purple
stripe crossing over them. This species has either a black or brown abdomen containing
three gray stripes. The appearance of
T. lineola
may slightly vary between flies living in different habitats. Those found in coastal
habitats may be lighter in color with wider frons than those found inland. This species
exhibits no sexual dimorphism.
- Other Physical Features
- ectothermic
- bilateral symmetry
- Sexual Dimorphism
- sexes alike
Development
Tabanus lineola
goes through holometabolous metamorphosis as a means of development.
Tabanus lineola
always lays its eggs in clusters. The size of the group of eggs may vary but is
usually about 10 mm long and 4 mm wide. Each individual egg is approximately 2 mm
long and .3 mm thick. The eggs that are first deposited are white in color, but after
about a day or so they gradually turn to a dark gray. The eggs remain this color
until they hatch. The amount of time for incubation varies based on temperature, but
lasts 3 to 5 days on average. The higher the temperature and more intense the sunlight,
the faster the eggs will hatch.
The larval period for
Tabanus lineola
is about 48 days.
Tabanus lineola
larvae are usually pale white in color, although other colors such as light yellow
or pink have been observed. The length of the larval stage is quite short and may
only last a month. Larvae reside mostly in the mud of ponds.
Tabanus lineola
go through 8 to 10 larval stages or instars. The larvae of most
Tabanidae
will usually molt right after hatching occurs. However, this process has been seen
to take a few days in
T. lineola
.
The pupal period of
T. lineola
is also brief, ranging from 7 to 16 days. The number of days may lessen in higher
temperatures. Pupae are about 11 to 19 mm long and 3 mm wide. After the pupal state,
an adult
T. lineola
emerges from the pupa. Often this emergence occurs in a dry and sandy environment.
The total development period of
T. lineola
, including egg, larval, pupal, and the period before oviposition is approximately
69.9 days.
- Development - Life Cycle
- metamorphosis
Reproduction
The mating mechanism of
T. lineola
has not often been observed experimentally or in the field so little is known regarding
their mating system.
After mating,
Tabanus lineola
females require a blood meal from a vertebrate host in order to oviposit her eggs.
Females then need to select a suitable oviposition site, generally on the tips of
salt marsh grasses.
Tabanus lineola
lays an average egg mass size of 208 eggs, which takes approximately 30 minutes to
complete. Female flies obtain energy for the oviposition from stored carbohydrates.
After several days, spindle-shaped larvae hatch which measure an average 2 mm in length.
This species completes 8 to 10 instars. After completing the last instar, larvae
will pupate. Pupae average 11 to 19 mm in length. The pupal stage typically lasts
from 7 to 16 days, after which a sexually mature adult emerges.
- Key Reproductive Features
- semelparous
- seasonal breeding
- sexual
- fertilization
- oviparous
There is little available evidence of parental investment for Tabanus lineola .
- Parental Investment
- no parental involvement
-
pre-fertilization
- provisioning
-
protecting
- female
Lifespan/Longevity
Under laboratory conditions, female flies may survive 4 or 5 days without a source
of carbohydrates. Others, who are provided carbohydrates may survive up to 42 days.
Behavior
The behavior patterns of
Tabanus lineola
are greatly influenced by climate patterns. For example, temperature has a large
influence on the flight activity of these flies. Higher temperatures and lower cloud
cover result in a greater amount of flying activity. The flight activity of male
flies is also known to vary with the time of day as well as the season.
Home Range
There is little available information about the home range of Tabanus lineola .
Communication and Perception
Tabanus lineola
may sense changes in its environment such as variation in temperature and cloud cover.
Behaviors and flying activity may change in response to these external changes. For
example, a temperature drop will cause flight activity to decline and thus
T. lineola
are less active in times of cooler temperatures. There is currently little significant
research in regards to what sense organs allows these flies to perceive environmental
changes or how
T. lineola
communicates with one another.
Food Habits
Tabanus lineola
feeds on both the blood of its hosts as well as plant nectar. Only females feed
on blood, which is primarily used for oviposition and the development of eggs. Their
digestive systems are unique and are able to store the ingested sugar and blood separately.
Adults will feed on blood by cutting through their hosts' skin and suctioning out
a blood meal. Common hosts include
cattle
,
horses
, mules, and
humans
. They usually will feed from about 9 a.m. to 6 p.m. Although blood meals are required
for successful reproduction, females who cannot obtain blood meals may still live
just as long as those who do. Therefore, is can be assumed that carbohydrates are
what keeps
T. lineola
alive rather than nutrients in blood.
When reared in captivity, larvae are known to feed on various foods. They appear
to prefer
snails
, worms, and the abdomen of
crustaceans
. However, when larvae are about to transform between instars during development,
they experience a time of complete rest where the will refuse any food.
- Primary Diet
- herbivore
- Animal Foods
- blood
- mollusks
- terrestrial worms
- aquatic crustaceans
- Plant Foods
- nectar
Predation
There is little available information regarding the predators of
Tabanus lineola
. Larvae are very vulnerable, and are likely consumed by many insectivorous organisms
including birds, amphibians, reptiles, mammals, and other insects. Adult flies are
likely predated by birds and possibly predatory wasps.
Tabanus lineola
egg masses are known to be eaten by
seriate lady beetles
.
Ecosystem Roles
This species acts as a parasite to both domesticated animals, such as hogs, horses,
and mules, as well as humans. At every stage of its life,
Tabanus lineola
serves as prey to a wide variety of other organisms. Adults of this species are
also potential pollinators for local plants, due to their mainly nectivorous diet.
In addition to acting as a parasite, there has also been occurrences of
Tabanus lineola
being the infected host for the larvae of arterial worms (
Elaeophora schneideri
). Although third stage larvae of this species have been found to infect
T. lineola
, the prevalence is quite low.
Tabanus lineola
are also hosts for bacteria of the genus
Spiroplasma
. They most likely acquire these bacteria through their environment as it is passed
to other flies at common feeding sites that contain carbohydrates like honeydew or
tree sap. This association may allow humans to control
T. lineola
populations using spiroplasmas.
- Ecosystem Impact
- parasite
- domestic horses ( Equus ferus caballus )
- domestic pigs ( Sus scrofa domesticus )
- mules
- humans ( Homo sapiens )
- bacteria ( Spiroplasma )
- aterial worms ( Elaeophora schneideri )
Economic Importance for Humans: Positive
Tabanus lineola does not appear to have any beneficial effects on humans.
Economic Importance for Humans: Negative
Tabanus lineola
is a major annoyance to domesticated animals being that they suck their blood for
nutrients. This causes a decrease in livestock production because the animals may
experience irritation, a large loss of blood, and exposure to diseases vectored by
T. lineola
. Humans must try to methodically control these pest populations so that livestock
production is not affected. There have been efforts to prevent
T. lineola
from harming domesticated animals through the use of insecticides, such as fenvalerate.
Although some
T. lineola
are unharmed by these efforts, many are killed or unable to feed on enough blood.
Many flies have built up a resistance to these insecticides so they may no longer
be effective. An alternative possibility in controlling these pest populations is
to infect them with spiroplasmas.
- Negative Impacts
-
injures humans
- bites or stings
- causes or carries domestic animal disease
Conservation Status
Tabanus lineola
is found across a broad distribution and is especially common in the eastern parts
of North America. This species appears to be fairly easy to capture for experimental
purposes due to their abundant presence. Being that they are so common, they do not
appear to be at any risk of endangerment. There are currently no conservation efforts
because of the negative impact this pest has on humans and domesticated animals.
Additional Links
Contributors
Diana Kaplan (author), University of Michigan-Ann Arbor, Heidi Liere (editor), University of Michigan-Ann Arbor, John Marino (editor), University of Michigan-Ann Arbor, Barry OConnor (editor), University of Michigan-Ann Arbor, Rachelle Sterling (editor), Special Projects.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- terrestrial
-
Living on the ground.
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- marsh
-
marshes are wetland areas often dominated by grasses and reeds.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- semelparous
-
offspring are all produced in a single group (litter, clutch, etc.), after which the parent usually dies. Semelparous organisms often only live through a single season/year (or other periodic change in conditions) but may live for many seasons. In both cases reproduction occurs as a single investment of energy in offspring, with no future chance for investment in reproduction.
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- parasite
-
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
- motile
-
having the capacity to move from one place to another.
- parasite
-
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
- causes or carries domestic animal disease
-
either directly causes, or indirectly transmits, a disease to a domestic animal
- herbivore
-
An animal that eats mainly plants or parts of plants.
- nectarivore
-
an animal that mainly eats nectar from flowers
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
References
Couvillion, C., V. Nettles, D. Sheppard, R. Joyner, O. Bannaga. 1986. TEMPORAL OCCURRENCE OF THIRD-STAGE LARVAE OF ELAEOPHORA SCHNEIDERI IN TABANUS LINELOA HINELLUS ON SOUTH ISLAND, SOUTH CAROLINA. Journal of Wildlife Diseases , 22: 196-200.
Foil, L., D. Leprince, R. Byford. 1991. Survival and Dispersal of Horse Flies (Diptera: Tabanidae) Feeding on Cattle Sprayed with a Sublethal Dose of Fenvalerate. Journal of Medical Entomology , 28: 663-667.
French, F., R. Whitcomb, J. Tully, P. Carle, J. Bove, R. Henegar, J. Adams, G. Gasparich, D. Williamson. 1997. Spiroplasma lineolae sp. nov., from the Horsefly Tabanus Lineola (Diptera: Tabanidae). International Journal of Systematic Bacteriology , 47/4: 1078-1081.
Joyce, J., E. Hansens. 1968. The Influence of Weather on the Activity and Behivor of Greenhead Flies, Tabanus nigrovittatus Macquart and Tabans lineola Fabricius. Journal of the New York Entomological Society , 76: 72-80.
Magnarelli, L., J. Anderson, A. Barbour. 1986. The Etiologic Agent of Lyme Disease in Deer Flies, Horse Flies, and Mosquitoes. The Journal of Infectious Diseases , 154/2: 355-358.
Orminati, S., E. Hansens. 1947. The Biology of Tabanus lineola lineola F.. Entomological Society of America , 67/6: 937-939.
Philip, C., M. Hamilton. 1942. Notes on Nearctic Tabaninae. Part III. THE TABANUS LINEOLA COMPLEX. Psyche , 48: 25-29.
Powder, W., R. Loomis. 1962. A New Species and New Records of Chiggers (Acarina, Trombiculidae) from Reptiles of Southern California. The Journal of Parasitology , 48: 204-208.
Richardson, C., B. Wilson. 1969.
Schutz, S., R. Gaugler, E. Vrijenjoek. 1989. Genetic and Morphometric Discrimination of Coastal and Inland Tabanus lineola (Diptera, Tabanidae). Annals of the Entomological Society of America , 82: 220-224.
Schwardt, H. 1931. THE BIOLOGY OF TABANUS LINEOLA FABR.. Annals of the Entomological Society of America , 24/2: 409-416.
Wedincamp, J., F. French, R. Whitcomb, R. Henegar. 1997. Laboratory Infection and Release of Spiroplasma (Entomoplasmatales: Spiroplasmataceae) from Horse Flies (Diptera: Tabanidae). Journal of Entomological Science , 32/4: 398-402.
Weiner, T., E. Hansens. 1975. Species and Numbers of Bloodsucking Flies Feeding on Hogs and Other Animals in Southern New Jersey. Journal of the New York Entomological Society , 83: 198-202.
Whitcomb, R., F. French, J. Tully, P. Carle, R. Henegar, K. Hackett, G. Gasparich, D. Williamson. 1997. Spiroplasma Species, Groups, and Subgroups from North American Tabanidae. Current Microbiology , 35: 287-293.
Wilson, B. 1967. Feeding Mating and Oviposition Studies of Horse Flies Tabanus lineola and T. fuscicostatus (Diptera:Tabanidae). Annals of the Entomological Society of America , 60: 1102.
Woodring, J., D. Leprince. 1992. The Function of Corpus Cardiacum Peptides in Horse Flies. J. Insect Physiol. , 38: 775-782.