Geographic Range
This species of water flea can be found in rocky pools along the Atlantic coastline
of the northeastern United States. It is not considered to be widespread in this area,
but is regularly found in certain pools in Maine. This species is also found in Western
Europe, including England, Belgium, the Netherlands, Finland, areas of the Black Sea
bordering Ukraine, and some Baltic Islands.
- Biogeographic Regions
- nearctic
- palearctic
Habitat
This species is found in freshwater and brackish (up to 8 ppt salinity) habitats including
lakes, rivers, and temporary pools. Although they prefer temperatures between 18-22°C,
they can tolerate a much broader range.
- Habitat Regions
- temperate
- freshwater
- Aquatic Biomes
- lakes and ponds
- rivers and streams
- temporary pools
- brackish water
Physical Description
These water fleas are very small, usually 2-5 mm long, with an overall shape similar
to a kidney bean. The body is enclosed by a transparent shell-like structure, called
a carapace, that is mostly made of chitin. Due to its transparent carapace, this species
tends to be the color of what it is currently eating. The carapace extends into the
head shields, an important diagnostic characteristic for this species. They have two
sets of long, doubly branched antennae and six thoracic appendages that are held inside
of the carapace and help to produce a current of water, carrying food and oxygen to
their mouths and gills. They also have two large claws, used mainly for cleaning the
carapace. They have one compound eye, which appears as an anterior dark spot, and
one simple eye (ocellus). Males are smaller than females (typically only 2 mm long
while females are 3-5 mm long) but have longer antennules and modified, hook-like
first appendages used for clasping females during mating.
- Other Physical Features
- ectothermic
- bilateral symmetry
- Sexual Dimorphism
- female larger
- sexes shaped differently
Development
The life cycle begins when a female produces a clutch of eggs (usually 6-10) that
are released into her brood chamber, located under her carapace. Eggs hatch into
juveniles within this brood chamber and are released when their mother molts, typically
within 2-3 days. Juveniles, which already resemble adults, go through a series of
molts and instars. Females are considered sexually mature after developing brood pouches,
usually after 4-6 instars, usually 6-10 days. If conditions are not favorable, or
if they have been produced sexually, eggs will be released into an ephippium, a hard,
protective casing, where eggs enter diapause before hatching when conditions are more
favorable.
- Development - Life Cycle
- diapause
Reproduction
These water fleas reproduce both asexually and sexually and have a cyclic parthenogenetic
life cycle, exhibiting heterogonic reproduction. In asexual reproduction, females
produce diploid eggs that develop into exact clones; only females are produced during
asexual reproduction cycles. However, during adverse conditions (low food availability,
temperature extremes, high population density), this species amy reproduce sexually.
During sexual reproduction, males grab onto females using their specialized second
antennae. Females produce haploid eggs which are fertilized by males and encased in
ephippia. These cases are carried on the female's back and fall off during her next
molt. Eggs enter diapause and stay in ephippia until conditions are favorable. Sexual
reproduction tends to take place in late fall months, with the ephippia-protected
eggs providing a population burst when spring comes.
- Mating System
- polygynandrous (promiscuous)
Peak egg production is during spring months (April and May), but eggs can be produced
during summer and fall as well. During spring months, a female can produce eggs every
four days; eggs/juveniles remain in brood pouches for 2-3 days. Number of eggs produced
at one time can be anywhere from 1-100, with an average of 6-10 eggs per brood. A
female can reproduce up to 25 times throughout her lifetime, although the average
is only 6 times.
- Key Reproductive Features
- iteroparous
- seasonal breeding
- year-round breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- parthenogenic
- sexual
- asexual
- fertilization
- ovoviviparous
- oviparous
Females keep their eggs and recently hatched young in their brood chambers for several
days, providing nutrients during development. Once juveniles are released there is
no additional parental care.
- Parental Investment
- female parental care
-
pre-fertilization
- provisioning
-
protecting
- female
-
pre-hatching/birth
-
provisioning
- female
-
protecting
- female
-
provisioning
-
pre-weaning/fledging
-
protecting
- female
-
protecting
-
pre-independence
-
provisioning
- female
-
provisioning
Lifespan/Longevity
Lifespan of these water fleas depends heavily on environmental conditions such as
oxygen levels, food availability, and temperature. In general, as temperature decreases,
lifespan increases, with averages of 40 days at 25°C and 56 days at 20°C. Unstable
environmental conditions tend to lead to shorter lifespans. While it has been suggested
that males of this species have shorter lifespans than females, recent research shows
evidence that this is likely not the case.
Behavior
This species lives in groups and is very abundant when present in a habitat. There
is no social hierarchy, though there is competition for resources between individuals
of this and other
Daphnia
species when present. They use their antennae to propel themselves with quick, upward,
jumping-like movements in the water and exhibit diel vertical migration, moving to
upper levels of water at night to feed and back down during the day to avoid predators.
Their larger size excludes them from predation by species who feed on smaller
g. Daphnia
, but can cause problems when space and resources are limited. Even though these water
fleas are one of the larger species in their genus, they can go extinct in habitats
including
Daphnia pulex
and
Daphnia longispina
. This species goes through population density cycles, with numbers decreasing during
cold or dry seasons.
- Key Behaviors
- natatorial
- nocturnal
- motile
- social
Home Range
Individuals of this species do not have distinct home ranges.
Communication and Perception
These water fleas have a compound eye that responds to light stimulus, can perceive
different color wavelengths, and can also track movements. They also use olfactory
and chemical cues in order to help them locate and evaluate potential food sources,
conspecifics, and potential predators.
Food Habits
These water fleas are filter feeders; filtration rates depend on temperature, body
size, food density and quality, oxygen concentration, and water pH. These animals
use leaf-like appendages called phylopods, located under their carapaces, to help
produce a water current. Setae on their thoracic legs filter food particulates (generally
smaller than 50 micrometers in diameter), which are then moved along a body groove
to their mouths. Their primary diet consists of zooplankton and phytoplankton; they
are also known to consume bacteria, detritus, and fungal spores.
- Primary Diet
-
herbivore
- algivore
- planktivore
- mycophage
- detritivore
- Animal Foods
- zooplankton
- Plant Foods
- algae
- phytoplankton
- Other Foods
- fungus
- detritus
- microbes
- Foraging Behavior
- filter-feeding
Predation
Predators of this species include many species of fishes, insects and other invertebrates.
They are larger than many other zooplankton species, which protects them from some
invertebrate predators, and they migrate to upper water levels at night to avoid predators
that feed during the day. Individuals can also alter their size and age at maturity,
egg production levels, and perform swarming behavior and escape reactions to avoid
predation.
Ecosystem Roles
These water fleas consume algae, bacteria and detritus in the water. They play a key
part in aquatic food webs as prey to fishes and invertebrates.
This species is host to a number of bacteria (including one causing White Fat Cell
Disease) and fungi, as well as some species of nematodes, amoebas and tapeworms.
- Pasteuri ramosa (Kingdom Bacteria)
- Spirobacillus cienkowskii (Kingdom Bacteria)
- Flabelliforma magnivora (Phylum Microsporidia, Kingdom Fungi)
- Glugoides intestinalis (Phylum Microsporidia, Kingdom Fungi)
- Larssonia obtusa (Phylum Microsporidia, Kingdom Fungi)
- Octosporea bayeri (Phylum Microsporidia, Kingdom Fungi)
- Ordospora colligata (Phylum Microsporidia, Kingdom Fungi)
- Metschnikowia bicuspidata (Order Saccharomycetales, Kingdom Fungi)
- Echinuria uncinata (Family Acuariidae, Phylum Nematoda)
- Pansporella perplexa (Order Amoebida, Phylum Protozoa)
- Cysticercus mirabilis (Class Cestoda, Phylum Platyhelminthes)
Economic Importance for Humans: Positive
This species can provide cleaner water in ponds and lakes, by eating algae and other
detritus that may build up in the water. It is also an indicator organism for water
quality and is used in tests of water toxicity and detecting various pollutants. This
species is easily cultivated, and is commonly fed to fish reared in aquaria.
- Positive Impacts
- pet trade
- research and education
Economic Importance for Humans: Negative
There are no known adverse effects of this species on humans.
Conservation Status
This species has not been evaluated by the International Union for Conservation of
Nature and Natural Resources and is not considered endangered or threatened.
Additional Links
Contributors
Molly Elenbaas (author), University of Michigan-Ann Arbor, Alison Gould (editor), University of Michigan-Ann Arbor, Jeremy Wright (editor), University of Michigan-Ann Arbor.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- freshwater
-
mainly lives in water that is not salty.
- brackish water
-
areas with salty water, usually in coastal marshes and estuaries.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- diapause
-
a period of time when growth or development is suspended in insects and other invertebrates, it can usually only be ended the appropriate environmental stimulus.
- polygynandrous
-
the kind of polygamy in which a female pairs with several males, each of which also pairs with several different females.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- seasonal breeding
-
breeding is confined to a particular season
- year-round breeding
-
breeding takes place throughout the year
- parthenogenic
-
development takes place in an unfertilized egg
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- asexual
-
reproduction that is not sexual; that is, reproduction that does not include recombining the genotypes of two parents
- fertilization
-
union of egg and spermatozoan
- internal fertilization
-
fertilization takes place within the female's body
- ovoviviparous
-
reproduction in which eggs develop within the maternal body without additional nourishment from the parent and hatch within the parent or immediately after laying.
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- female parental care
-
parental care is carried out by females
- natatorial
-
specialized for swimming
- nocturnal
-
active during the night
- motile
-
having the capacity to move from one place to another.
- social
-
associates with others of its species; forms social groups.
- visual
-
uses sight to communicate
- chemical
-
uses smells or other chemicals to communicate
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- zooplankton
-
animal constituent of plankton; mainly small crustaceans and fish larvae. (Compare to phytoplankton.)
- phytoplankton
-
photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)
- detritus
-
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
- filter-feeding
-
a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.
- pet trade
-
the business of buying and selling animals for people to keep in their homes as pets.
- herbivore
-
An animal that eats mainly plants or parts of plants.
- planktivore
-
an animal that mainly eats plankton
- mycophage
-
an animal that mainly eats fungus
- detritivore
-
an animal that mainly eats decomposed plants and/or animals
References
Alekseev, V., W. Lampert. 2001. Maternal control of resting-egg production in Daphnia. Nature , 414/6866: 899-901.
Boersma, M., P. Spaak, L. De Meester. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. American Naturalist , 152/2: 237-248.
Buck, J., L. Truong, A. Blaustein. 2011. Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus?. Biodiversity and Conservation , 20/14: 3549-3553. Accessed February 08, 2013 at http://link.springer.com/article/10.1007%2Fs10531-011-0147-4 .
Clare, J. 2002. "Daphnia: An aquarist's guide" (On-line). Accessed December 05, 2012 at http://www.caudata.org/daphnia/#anatomy .
Consi, T., M. Passani, E. Macagno. 1990. Eye movements in Daphnia magna. Regions of the eye are specialized for different behaviors. Journal of Comparative Physiology A , 166/3: 411-420. Accessed February 08, 2013 at http://www.ncbi.nlm.nih.gov/pubmed/2324997 .
Coors, A., J. Vanoverbeke, T. De Bie, L. De Meester. 2009. Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquatic Toxicology , 95/1: 71-79.
Ebert, D. 2005. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia . Bethesda, Maryland: National Center for Biotechnology Information (US).
Enserink, E., M. Kerkhofs, C. Baltus, J. Koeman. 1995. Influence of food quality and lead exposure on maturation in Daphnia magna: evidence for a trade-off mechanism. Functional Ecology , 9/2: 175-185.
Grzesiuk, M., B. Pietrzak, A. Bednarska. 2010. Longevity of Daphnia magna males and females. Hydrobiologia , 643: 71-75.
Haney, J. 2010. "Daphnia magna" (On-line). An Image-Based Key To The Zooplankton of the Northeast (USA). Accessed February 01, 2012 at http://cfb.unh.edu/CFBKey/html/Organisms/CCladocera/FDaphnidae/GDaphnia/Daphnia_magna/daphniamagna.html .
Hanski, I., E. Ranta. 1983. Coexistence in patchy environment: three species of Daphnia in rock pools. Journal of Animal Ecology , 52/1: 263-279.
Hooper, H., R. Connon, A. Callaghan, G. Fryer, S. Yarwood-Buchanan, J. Biggs, S. Maund, T. Hutchinson, R. Sibly. 2008. The ecological niche of Daphnia magna characterized using population growth rate. Ecology , 89/4: 1015-1022.
IUCN, 2012. "The IUCN Red List of Threatened Species" (On-line). Accessed February 08, 2013 at http://www.iucnredlist.org/search .
Ignace, D., S. Dodson, D. Kashian. 2011. Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies. Hydrobiologia , 668/1: 117-123.
Lauridsen, T., D. Lodge. 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography , Vol. 41/ No. 4: 794-798.
Pietrazak, B., A. Bednarska, M. Grzesiuk. 2010. Longevity of Daphnia magna males and females. Hydrobiologia , 643/1: 71-75. Accessed February 08, 2013 at http://rd.springer.com/article/10.1007/s10750-010-0138-6 .
Roozen, F., M. Lürling. 2001. Behavioural response of Daphnia to olfactory cues from food, competitors and predators. Journal of Plankton Research , 23/8: 797-808. Accessed February 08, 2013 at http://plankt.oxfordjournals.org/content/23/8/797.full .
Tessier, A., L. Henry, C. Goulden. 1983. Starvation in Daphnia: energy reserves and reproductive allocation. Limnology and Oceanography , 28/4: 667-676.
Vanoverbeke, J., K. De Gelas, L. De Meester. 2007. Habitat size and the genetic structure of a cyclical parthenogen, Daphnia manga. Heredity , 98: 419-426. Accessed January 24, 2012 at http://www.nature.com/hdy/journal/v98/n6/full/6800958a.html .
Young, S. 1974. Directional differences in the colour sensitivity of Daphnia magna. Journal of Experimental Biology , 61: 261-267. Accessed February 08, 2013 at http://jeb.biologists.org/content/61/1/261.full.pdf .
2012. "Daphnia magna Straus, 1820" (On-line). World Register of Marine Species. Accessed February 08, 2013 at http://www.marinespecies.org/aphia.php?p=taxdetails&id=148372 .
2011. "Daphnia spp., water flea" (On-line). GeoChemBio.com. Accessed February 21, 2012 at http://www.geochembio.com/biology/organisms/daphnia/#refs .
Marinco Bioassay Laboratory, Inc. 2005. "Daphnids" (On-line). Marinco Bioazzay Laboratory Aquaculture. Accessed January 30, 2012 at http://mblaquaculture.com/content/organisms/daphnids.php#daphnia .