Geographic Range
Mainly an Atlantic coast species, the eastern ellliptio is found in the Apalachicola river system, Altamaha River system of Georgia north to the St. Lawrence River system of Canada. In the Interior Basin it is found west to Lake Superior and within the Hudson Bay drainage.
In Michigan
E. complanata
is found from Cheboygan County north through the upper peninsula. In the lower peninsula
the southernmost records were from Lake Huron. One historical record was from the
Clinton River.
Habitat
The eastern elliptio is mainly found in stable shoals of lakes or river-lakes in the
northern part of the lower peninsula and the upper peninsula. It was most abundant
in substrates composed of clay mixed with marl and fine sand, but rarely in mud.
Depths where it seemed most common were one to 1.6 m (3 to 5 feet).
- Habitat Regions
- freshwater
- Aquatic Biomes
- rivers and streams
Physical Description
The eastern elliptio is up to 12.5 cm (5 inches) long , and is quadrate or rectangular in shape. The shell is heavy and compressed with an angular posterior ridge and prominent posterior slope. The anterior end is rounded, the posterior end rounded to bluntly pointed. The dorsal margin is straight and the ventral margin is straight to slightly curved.
Umbos are low, being raised only slightly above the hinge line. The beak sculpture has 5-6 ridges.
The periostracum (outer shell layer) is tan or brown, sometimes with green rays. Older specimens tend to be more brown or black.
On the inner shell, the left valve has two pseudocardinal teeth , which are triangular and rough. The two lateral teeth are straight to slightly curved and moderately long. The right valve has one triangular, rough pseudocardinal tooth, and one straight to slightly curved, long, lateral tooth.
The beak cavity is shallow. The nacre is purple, rose-colored or white.
In Michigan, this species can be confused with the
spike
. The eastern ellipse is slightly more rhomboidal, more compressed, and has a slightly
more prominent posterior ridge.
- Other Physical Features
- ectothermic
- heterothermic
- bilateral symmetry
- Sexual Dimorphism
- sexes alike
Development
Fertilized eggs are brooded in the marsupia (water tubes) up to one months, depending
on environmental conditions, where they develop into larvae, called glochidia. The
glochidia are then released into the water where they must attach to the gill filaments
and/or general body surface of the host fish. After attachment, epithelial tissue
from the host fish grows over and encapsulates the glochidium, usually within a few
hours. The glochida then metamorphoses into a juvenile mussel within a few days or
weeks. After metamorphosis, the juvenile is sloughed off as a free-living organism.
Juveniles are found in the substrate where they develop into adults.
- Development - Life Cycle
- metamorphosis
Reproduction
In general, gametogenesis in
unionids
is initiated by increasing water temperatures. The general
life cycle
of a
unionid
, includes open fertilization. Males release sperm into the water, which is taken
in by the females through their respiratory current. The eggs are fertilized in the
suprabranchial chambers, then pass into water tubes of the gills, where they develop
into larvae, called glochidia.
- Key Reproductive Features
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- viviparous
Females brood fertilized eggs in their marsupial pouch. The fertilized eggs develop into glochidia. There is no parental investment after the female releases the glochidia.
- Parental Investment
-
pre-fertilization
- provisioning
-
pre-hatching/birth
-
provisioning
- female
-
provisioning
Behavior
Mussels in general are rather sedentary, although they may move in response to changing
water levels and conditions. Although not thoroughly documented, the mussels may
vertically migrate to release glochidia and spawn. Often they are found buried under
the substrate.
Communication and Perception
Three large, distinct ganglia make up the bilateral nervous system of a bivalve . Cerebropleural ganglia are anterior and give rise to the visceral (gut) ganglia and pedal (foot) ganglia.
The middle lobe of the mantle edge has most of a bivalve's sensory organs. Paired statocysts , which are fluid filled chambers with a solid granule or pellet (a statolity) are in the mussel's foot. The statocysts help the mussel with georeception, or orientation.
Unionids in general may have some form of chemical reception to recognize fish hosts. Mantle flaps in the lampsilines are modified to attract potential fish hosts. How the snuffbox attracts its main fish host, the logperch , is unknown. However, the mantle flaps are darkened and may resemble food for the logperch.
Glochidia respond to both touch, light and some chemical cues. In general, when touched
or a fluid is introduced, they will respond by clamping shut.
- Communication Channels
- chemical
- Perception Channels
- visual
- tactile
- vibrations
- chemical
Food Habits
In general, unionids are filter feeders. The mussels use cilia to pump water into the incurrent siphon where food is caught in a mucus lining in the demibranchs. Particles are sorted by the labial palps and then directed to the mouth.
Mussels have been cultured on algae, but they may also ingest bacteria, protozoans
and other organic particles.
- Primary Diet
- planktivore
- detritivore
- Plant Foods
- algae
- phytoplankton
- Other Foods
- detritus
- microbes
- Foraging Behavior
- filter-feeding
Predation
Unionids in general are preyed upon by muskrats , raccoons , minks , otters , and some birds. Juveniles are probably also fed upon by freshwater drum , sheepshead , lake sturgeon , spotted suckers , redhorses , and pumpkinseeds .
Unionid mortality and reproduction is affected by unionicolid mites and monogenic
trematodes
feeding on gill and mantle tissue. Parasitic
chironomid
larvae may destroy up to half the mussel gill.
Ecosystem Roles
Fish hosts are determined by looking at both lab transformations and natural infestations. Looking at both is necessary, as lab transformations from glochidia to juvenile may occur, but the mussel may not actually infect a particular species in a natural situation. Natural infestations may also be found, but glochidia will attach to almost any fish, including those that are not suitable hosts. Lab transformations involve isolating one particular fish species and introducing glochidia either into the fish tank or directly inoculating the fish gills with glochidia. Tanks are monitored and if juveniles are later found the fish species is considered a suitable host.
Lab metamorphosis and natural infections of Elliptio complanata have been observed for the yellow perch and the banded killifish, .
In lab trials,
Elliptio complanata
metamorphosed on the
green sunfish
, the
largemouth bass
, the
orangespotted sunfish
, and the
white crappie
.
- Ecosystem Impact
- parasite
- yellow perch, Perca flavescens
- banded killifish, Fundulus diaphanus
- green sunfish, Lepomis cyanellus
- largemouth bass, Micropterus salmoides
- orangespotted sunfish, Lepomis humilis
- white crappie, Pomoxis annularis
Economic Importance for Humans: Positive
Mussels are ecological indicators. Their presence in a water body usually indicates good water quality.
Conservation Status
This species is not on any federal or state lists.
Other Comments
Elliptio complanata is synonomous with Elliptio complanatus .
An detailed life history of this species was done by Max Matteson in the early 1940s
in northern Michigan.
Additional Links
Contributors
Renee Sherman Mulcrone (author).
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- freshwater
-
mainly lives in water that is not salty.
- ectothermic
-
animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- internal fertilization
-
fertilization takes place within the female's body
- viviparous
-
reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.
- parasite
-
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
- motile
-
having the capacity to move from one place to another.
- sedentary
-
remains in the same area
- chemical
-
uses smells or other chemicals to communicate
- visual
-
uses sight to communicate
- tactile
-
uses touch to communicate
- vibrations
-
movements of a hard surface that are produced by animals as signals to others
- chemical
-
uses smells or other chemicals to communicate
- phytoplankton
-
photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)
- detritus
-
particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).
- filter-feeding
-
a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.
- parasite
-
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
- planktivore
-
an animal that mainly eats plankton
- detritivore
-
an animal that mainly eats decomposed plants and/or animals
References
Arey, L. 1921. An experimental study on glochidia and the factors underlying encystment. J. Exp. Zool. , 33: 463-499.
Brusca, R., G. Brusca. 2003. Invertebrates . Sunderland, Massachusetts: Sinauer Associates, Inc..
Burch, J. 1975. Freshwater unionacean clams (Mollusca: Pelecypoda) of North America . Hamburg, Michigan: Malacological Publications.
Cordeiro, J. 2003. "Family Unionidae: Genus Elliptio" (On-line). Freshwater mussels of the New York metropolitan region and New Jersey, A guide to their identification, biology, and conservation. Accessed September 05, 2006 at http://cbc.amnh.org/mussel/elliptiogenustext.html .
Cummings, K., G. Watters. 2004. "Mussel/Host Data Base" (On-line). Molluscs Division of the Museum of Biological Diversity at the Ohio State University. Accessed September 25, 2005 at http://128.146.250.63/Musselhost/ .
Cummings, K., C. Mayer. 1992. Field guide to freshwater mussels of the Midwest . Champaign, Illinois: Illinois Natural History Survey Manual 5. Accessed August 25, 2005 at http://www.inhs.uiuc.edu/cbd/collections/mollusk/fieldguide.html .
Lefevre, G., W. Curtis. 1912. Experiments in the artificial propagation of fresh-water mussels. Proc. Internat. Fishery Congress, Washington. Bull. Bur. Fisheries , 28: 617-626.
Lefevre, G., W. Curtis. 1910. Reproduction and parasitism in the Unionidae. J. Expt. Biol. , 9: 79-115.
Matteson, M. 1948. Life history of Elliptio complanatus (Dillwyn, 1817). American Midland Naturalist , 40: 690-723.
Matteson, M. 1955. Studies on the natural history of the Unionidae. American Midland Naturalist , 53: 126-145.
Matteson, M. 1948. The taxonomic and distributional history of the fresh-water mussel Elliptio complanatus (Dillwyn, 1817). Nautilus , 61: 127-132.
Matteson, M. 1948. The taxonomic and distributional history of the fresh-water mussel Elliptio complanatus (Dillwyn, 1817) (continued). Nautilus , 62: 13-1.
Nedeau, E., M. McCollough, B. Swartz. 2000. The freshwater mussels of Maine . Augusta, Maine: Maine Dept. of Insland Fisheries and Wildlife.
Oesch, R. 1984. Missouri naiades, a guide to the mussels of Missouri . Jefferson City, Missouri: Missouri Department of Conservation.
Tedla, S., C. Fernando. 1969. Observations on the glochidia of Lampsilis radiata (Gmelin) infesting yellow perch, Perca flavescens (Mitchill) in the Bay of Quinte, Lake Ontario. Canadian Journal of Zoology , 47: 705-712.
Watters, G. 1995. A guide to the freshwater mussels of Ohio . Columbus, Ohio: Ohio Department of Natural Resources.
Young, D. 1911. The implantation of the glochidium on the fish. Univerity of Missouri Bulletin Science Series , 2: 1-20.
van der Schalie, H. 1938. The naiad fauna of the Huron River, in southeastern Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan , 40: 1-83.