Diversity
Phylum
Echiura
is comprised of over 230 species of unsegmented, sausage-shaped, coelomate worms,
traditionally placed in three orders:
Echiuroinea
, by far the largest order, with two families (
Bonelliidae
and
Echiuridae
) and many species;
Xenopnuesta
, with one family (
Urechidae
) and 4 species; and
Heteromyota
, which is made up of one monotypic family (
Ikedaidae
), containing two species. Echiurans range widely in body length, color, and skin
texture. They are characterized by a highly mobile, extendable proboscis (although
it cannot retract into the body cavity), whose use in feeding gives them the common
name "spoon worms". These worms inhabit marine or brackish water environments and
can usually be found inside the burrows they create in the substrate. Many species
deposit feed on detritus, but filter feeding varieties are also known. Echiurans of
genus
Bonellia
are toxic and exhibit extreme sexual dimorphism as well as an unusual sex determination
mechanism.
Geographic Range
Echiurans are found in marine and brackish environments throughout the world.
- Biogeographic Regions
- nearctic
- palearctic
- oriental
- ethiopian
- neotropical
- australian
- oceanic islands
- indian ocean
- atlantic ocean
- pacific ocean
- mediterranean sea
- Other Geographic Terms
- holarctic
- cosmopolitan
Habitat
Echiurans are benthic, marine invertebrates, typically found burrowed into sand or
living on surface substrates, from intertidal areas to depths of 10,000 m (most commonly
in shallow waters). In the Atlantic Ocean, the greatest echiuran species diversity
occurs in the northern temperate region.
- Habitat Regions
- temperate
- tropical
- saltwater or marine
- Aquatic Biomes
- benthic
- coastal
- abyssal
- brackish water
- Other Habitat Features
- intertidal or littoral
Systematic and Taxonomic History
The name
Echiura
was first applied to these worms in 1940 by William Wallace Newby. Inter-relationships
of echiuran groups remain a contentious area of study. The traditional classification
divides this phylum into three orders based on the presence or absence of a closed
respiratory system, the presence or absence of a thin-walled, enlarged cloaca, and
arrangements of the body wall musculature; these orders include
Xenopneusta
(containing family
Urechidae
),
Heteromyota
(containing the monotypic family
Ikedaidae
), and
Echiuroinea
(containing families
Bonelliidae
and
Echiuridae
). This classification appears to be based on incorrect information, however, and
a later revision eliminated order
Heteromyota
, placing genus
Ikeda
in
Echiuroinea
, while also maintaining order
Xenopneusta
. Recent analyses have recognized two major clades within
Echiura
; a so-called
Bonellia
-group, containing
Bonellidae
and
Ikedaidae
, and a
Urechis
-group, containing
Urechidae
and
Echiuridae
. Support for this classification appears strong, and comes from both molecular data
and the presence of multiple putative morphological and life history synapomorphies
for both clades.
Although they are distinctive and widely accepted as a monophyletic group, many studies
(both morphological and molecular phylogenetic analyses) have indicated that echiurans
actually represent derived segmented worms (Phylum
Annelida
), rather than their own phylum, a hypothesis that has since been almost universally
accepted by biologists.
Physical Description
Echiurans are unsegmented worms with two body sections; the trunk and an anterior,
preoral, extendable proboscis, which is often much longer than the trunk. They range
widely in body length, from under 10 mm to over 2 m, and their skin surfaces may be
smooth or warty, sometimes with chitinous bristles. They range widely in color as
well, from dull beige or gray to bright green, as seen in members of genus
Bonellia
due to the production of the green-colored toxin known as bonellin.
Echiuran body walls are formed by layers of muscle (circular, longitudinal and oblique),
supported by a hydrostatic skeleton formed by the coelom. The body wall is covered
with a fibrous dermis, epidermis (made of gland cells and cubular cells) and a thin
cuticle. A peritoneum lines the body wall internally. The epidermis along the proboscis
groove (also known as the “gutter”) is ciliated. This gutter is located at the anterior
end of the trunk and leads to the mouth. The coelomic cavity is large and unsegmented,
although there are partial mesenteric separations between the gut and body wall. This
construction allows for peristaltic movements of the body wall during burrowing or
other locomotion. They also have a set of small posterior hooks, which help to anchor
the worms in their burrows.
Most echiurans are not sexually dimorphic; members of genus
Bonellia
, however, are extremely dimorphic, with females reaching lengths of up to 2 meters,
while males are only a few millimeters long, have greatly simplified body systems,
and live inside the bodies of females.
- Other Physical Features
- heterothermic
- bilateral symmetry
- poisonous
- Sexual Dimorphism
- sexes alike
- female larger
Development
Ripe gametes are released through the nephridia. Epidemic spawning is typical and
fertilization occurs externally. Cell cleavage is holoblastic and spiral. Free swimming
trocophore larvae develop and, over the course of up to three months, elongate into
young worms. Sex determination in
bonelliid
species is mainly influenced by environmental factors (metagamic), although genetic
factors determine the sex of larvae not exposed to appropriate cues. If a larva settles
near the proboscis of a female, it will develop rapidly into a male, while if it settles
away from a female, it will develop into a female. If two larvae clump together, one
will likely be female and the other male. Larvae settling on a female's trunk rather
than proboscis may appear to remain undifferentiated, apparently representing an intermediate
sex.
- Development - Life Cycle
- metamorphosis
Reproduction
Gametes are produced in specialized regions of the peritoneum, often located at the
base of the ventral blood vessel. Ripe gametes are released into the coelom and accumulate
in the nephridia. Echiurans typically breed via epidemic spawning, with fertilization
taking place externally. In many
bonelliid
species, males live parasitically within the female gonoducts, fertilizing eggs as
they are released. There is currently no data available regarding triggers for echiuran
spawning.
- Mating System
- polygynandrous (promiscuous)
Spawning season for echiurans varies depending on location; some populations breed
during the winter, others during the summer. These worms are dioecious, and are not
known to reproduce asexually.
- Key Reproductive Features
- iteroparous
- seasonal breeding
- gonochoric/gonochoristic/dioecious (sexes separate)
- sexual
- fertilization
- oviparous
As broadcast and epidemic spawners, echiurans are not known to exhibit any parental
investment beyond the production of gametes.
- Parental Investment
- no parental involvement
Lifespan/Longevity
Although data regarding lifespan of echiurans is not widely available, it has been
reported that members of family
Urechidae
may live up to 25 years.
Behavior
Euchiurans are most often found with their trunks buried, anterior end upward; members
of genus
Urechis
create U-shaped burrows. Burrowing and other locomotion is accomplished through peristaltic
movements of the body wall. These worms are typically solitary and sessile; male
bonelliids
are considered to be parasitic on females.
Communication and Perception
Echiurans have simple nervous systems, comprised of an anterior nerve ring extending
around the gut (dorsally to the proboscis and ventrally to a nerve cord extending
along the body). They lack most sensory systems, having only weak tactile sensitivity
and possibly some chemoreceptive capabilities. Modes of communication between echiurans
are unknown, but given their limited sensory capabilities, chemical cues appear to
be the most likely means by which these animals communicate.
Food Habits
Most echiurans deposit feed by extending the proboscis, which can expand and contract,
over the substrate near their burrows. Gland cells in the epithelium of the proboscis
secrete adhesive mucus, and food particles (mainly detritus) are moved through the
mucus to the mouth by cilia that line the proboscis groove (also called the gutter).
Members of genus
Urechis
are considered filter feeders. These species produce a funnel-shaped mucus net from
glands at the base of the proboscis, drawing water through the mucus net and into
the burrow, causing particles of detritus to be caught in the net. The mucus net is
periodically drawn in by the proboscis and ingested.
- Primary Diet
- detritivore
- Foraging Behavior
- filter-feeding
Predation
Echiurans may withdraw into their burrows to hide from potential predators; however,
animals including bony fishes, sharks, rays, and sea otters are known to prey on them;
humans may also use these worms as bait.
Bonelliid
species produce a toxin, bonellin, which lends them a bright green color and is likely
an antipredatory adaptation.
Ecosystem Roles
Echiurans, especially members of genus
Urechis
(commonly known as "innkeeper worms") often have commensal species sharing their
burrows; these commonly include shrimp, small crabs, polychaetes, bivalves, and copepods.
Less commonly commensals include nematodes, nemerteans, flatworms, entoprocts, gastropods,
and fishes. There is evidence that some echiuran species, such as
Bonellia viridis
, are commensal with rock-burrowing mudshrimp. Common parasites of echiurans include
gregarinid sporozoans, ciliates, trematodes, nematodes, polychaetes, and cestodes.
Male
bonelliids
are considered to be parasitic on females.
- Upogebia mediterranea (Class Malacostraca , Phylum Arthropoda )
- Bhawania goodei (Class Polychaeta , Phylum Annelida )
- Gattyana cirrhosa (Class Polychaeta , Phylum Annelida )
- Harmothoe imbricata (Class Polychaeta , Phylum Annelida )
- Harmothoe sarsi (Class Polychaeta , Phylum Annelida )
- Hesperonoe adventor (Class Polychaeta , Phylum Annelida )
- Hesperonoe laevis (Class Polychaeta , Phylum Annelida )
- Nainereis setosa (Class Polychaeta , Phylum Annelida )
- Nematonereis unicornis (Class Polychaeta , Phylum Annelida )
- Notomastus latericeus (Class Polychaeta , Phylum Annelida )
- Ophiodromus pallidus (Class Polychaeta , Phylum Annelida )
- Pholoe minuta (Class Polychaeta , Phylum Annelida )
- Pontogenia chrysocoma (Class Polychaeta , Phylum Annelida )
- Oligognathus bonelliae (Class Polychaeta , Phylum Annelida )
- Ophiodromus flexuosus (Class Polychaeta , Phylum Annelida )
- Scalibregma inflatum (Class Polychaeta , Phylum Annelida )
- Acmaeopleura balssi (Class Malacostraca , Phylum Arthropoda )
- Acmaeopleura toriumii (Class Malacostraca , Phylum Arthropoda )
- Alpheus barbatus (Class Malacostraca , Phylum Arthropoda )
- Alpheus dentipes (Class Malacostraca , Phylum Arthropoda )
- Athanas nitescens (Class Malacostraca , Phylum Arthropoda )
- Athanopsis dentipes (Class Malacostraca , Phylum Arthropoda )
- Athanopsis rubricinctuta (Class Malacostraca , Phylum Arthropoda )
- Betaeus longidactylus (Class Malacostraca , Phylum Arthropoda )
- Galathea intermedia (Class Malacostraca , Phylum Arthropoda )
- Jaxea nocturna (Class Malacostraca , Phylum Arthropoda )
- Lysmata seticaudata (Class Malacostraca , Phylum Arthropoda )
- Mortensenella forceps (Class Malacostraca , Phylum Arthropoda )
- Pestarella candida (Class Malacostraca , Phylum Arthropoda )
- Pinnixa fransiscana (Class Malacostraca , Phylum Arthropoda )
- Pinnixa longipes (Class Malacostraca , Phylum Arthropoda )
- Pinnixa lunzi (Class Malacostraca , Phylum Arthropoda )
- Pinnixa occidentalis (Class Malacostraca , Phylum Arthropoda )
- Pinnixa schmitti (Class Malacostraca , Phylum Arthropoda )
- Pseudopinnixa carinata (Class Malacostraca , Phylum Arthropoda )
- Scleroplax granulata (Class Malacostraca , Phylum Arthropoda )
- Upogebia mediterranea (Class Malacostraca , Phylum Arthropoda )
- Upogebia omissa (Class Malacostraca , Phylum Arthropoda )
- Xantho hydrophilus granulicarpus (Class Malacostraca , Phylum Arthropoda )
- Echiurophilus fizei (Class Maxillopoda , Phylum Arthropoda )
- Goidelia japonica (Class Maxillopoda , Phylum Arthropoda )
- Goidelia pelliviva (Class Maxillopoda , Phylum Arthropoda )
- Hemicyclops mortoni (Class Maxillopoda , Phylum Arthropoda )
- Clevelandia ios (Class Osteichthyes , Phylum Chordata )
- Gobius geniporus (Class Osteichthyes , Phylum Chordata )
- Gobius niger (Class Osteichthyes , Phylum Chordata )
- Loxosomella ditadii (Order Solitaria , Phylum Entoprocta )
- Loxosomella zima (Order Solitaria , Phylum Entoprocta )
- Abra alba (Class Bivalvia , Phylum Mollusca )
- Lithophaga lithophaga (Class Bivalvia , Phylum Mollusca )
- Mysella bidentata (Class Bivalvia , Phylum Mollusca )
- Nucula nitidosa (Class Bivalvia , Phylum Mollusca )
- Pseudopythina ochetostomae (Class Bivalvia , Phylum Mollusca )
- Scintilla thalassemicola (Class Bivalvia , Phylum Mollusca )
- Saxicavella jeffresii (Class Bivalvia , Phylum Mollusca )
- Lophodoris scala (Class Gastropoda , Phylum Mollusca )
- Sigaretornus planus (Class Gastropoda , Phylum Mollusca )
- Lepidopleurus cajetanus (Class Polyplacophora , Phylum Mollusca )
- Cliona sp. (Class Demospongiae , Phylum Porifera )
- Aspidosiphon muelleri (Class Phascolosomatidea , Phylum Sipuncula )
- Phascolosoma granulatum (Class Phascolosomatidea , Phylum Sipuncula )
Economic Importance for Humans: Positive
Beyond scientific research, there are no known positive effects of echiurans on humans
- Positive Impacts
- research and education
Economic Importance for Humans: Negative
There are no known adverse effects of echiurans on humans.
Conservation Status
As a broadly cosmopolitan phylum, echiurans in general are not currently in danger
of becoming endangered, nor is any individual species within the phylum.
Additional Links
Contributors
Jeremy Wright (author), University of Michigan-Ann Arbor, Leila Siciliano Martina (editor), Animal Diversity Web Staff.
- Nearctic
-
living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Palearctic
-
living in the northern part of the Old World. In otherwords, Europe and Asia and northern Africa.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oriental
-
found in the oriental region of the world. In other words, India and southeast Asia.
- Ethiopian
-
living in sub-Saharan Africa (south of 30 degrees north) and Madagascar.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Neotropical
-
living in the southern part of the New World. In other words, Central and South America.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Australian
-
Living in Australia, New Zealand, Tasmania, New Guinea and associated islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- oceanic islands
-
islands that are not part of continental shelf areas, they are not, and have never been, connected to a continental land mass, most typically these are volcanic islands.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Atlantic Ocean
-
the body of water between Africa, Europe, the southern ocean (above 60 degrees south latitude), and the western hemisphere. It is the second largest ocean in the world after the Pacific Ocean.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- Pacific Ocean
-
body of water between the southern ocean (above 60 degrees south latitude), Australia, Asia, and the western hemisphere. This is the world's largest ocean, covering about 28% of the world's surface.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- native range
-
the area in which the animal is naturally found, the region in which it is endemic.
- holarctic
-
a distribution that more or less circles the Arctic, so occurring in both the Nearctic and Palearctic biogeographic regions.
Found in northern North America and northern Europe or Asia.
- cosmopolitan
-
having a worldwide distribution. Found on all continents (except maybe Antarctica) and in all biogeographic provinces; or in all the major oceans (Atlantic, Indian, and Pacific.
- temperate
-
that region of the Earth between 23.5 degrees North and 60 degrees North (between the Tropic of Cancer and the Arctic Circle) and between 23.5 degrees South and 60 degrees South (between the Tropic of Capricorn and the Antarctic Circle).
- tropical
-
the region of the earth that surrounds the equator, from 23.5 degrees north to 23.5 degrees south.
- saltwater or marine
-
mainly lives in oceans, seas, or other bodies of salt water.
- benthic
-
Referring to an animal that lives on or near the bottom of a body of water. Also an aquatic biome consisting of the ocean bottom below the pelagic and coastal zones. Bottom habitats in the very deepest oceans (below 9000 m) are sometimes referred to as the abyssal zone. see also oceanic vent.
- coastal
-
the nearshore aquatic habitats near a coast, or shoreline.
- abyssal
-
on or near the ocean floor in the deep ocean. Abyssal regions are characterized by complete lack of light, extremely high water pressure, low nutrient availability, and continuous cold (3 degrees C).
- brackish water
-
areas with salty water, usually in coastal marshes and estuaries.
- intertidal or littoral
-
the area of shoreline influenced mainly by the tides, between the highest and lowest reaches of the tide. An aquatic habitat.
- heterothermic
-
having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.
- bilateral symmetry
-
having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.
- poisonous
-
an animal which has a substance capable of killing, injuring, or impairing other animals through its chemical action (for example, the skin of poison dart frogs).
- metamorphosis
-
A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.
- polygynandrous
-
the kind of polygamy in which a female pairs with several males, each of which also pairs with several different females.
- iteroparous
-
offspring are produced in more than one group (litters, clutches, etc.) and across multiple seasons (or other periods hospitable to reproduction). Iteroparous animals must, by definition, survive over multiple seasons (or periodic condition changes).
- seasonal breeding
-
breeding is confined to a particular season
- sexual
-
reproduction that includes combining the genetic contribution of two individuals, a male and a female
- fertilization
-
union of egg and spermatozoan
- external fertilization
-
fertilization takes place outside the female's body
- internal fertilization
-
fertilization takes place within the female's body
- oviparous
-
reproduction in which eggs are released by the female; development of offspring occurs outside the mother's body.
- fossorial
-
Referring to a burrowing life-style or behavior, specialized for digging or burrowing.
- diurnal
-
- active during the day, 2. lasting for one day.
- nocturnal
-
active during the night
- crepuscular
-
active at dawn and dusk
- parasite
-
an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death
- sessile
-
non-motile; permanently attached at the base.
Attached to substratum and moving little or not at all. Synapomorphy of the Anthozoa
- sedentary
-
remains in the same area
- solitary
-
lives alone
- tactile
-
uses touch to communicate
- chemical
-
uses smells or other chemicals to communicate
- filter-feeding
-
a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.
- detritivore
-
an animal that mainly eats decomposed plants and/or animals
References
Anker, A., G. Murina, C. Lira, J. Caripe, A. Palmer, M. Jeng. 2005. Macrofauna Associated with Echiuran Burrows: A Review with New Observations of the Innkeeper Worm, Ochetostoma erythrogrammon Leuckart and RĂĽppel, in Venezuela. Zoological Studies , 44/2: 157-190.
Ax, P. 1999. Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik . Stuttgart, Germany: Gustav Fischer Verlag.
Biseswar, R. 2009. The geographic distribution of echiurans in the Atlantic Ocean (Phylum Echiura). Zootaxa , 2222: 17-30. Accessed March 25, 2013 at http://www.mapress.com/zootaxa/2009/f/z02222p030f.pdf .
Bleidorn, C., L. Vogt, T. Bartolomaeus. 2003. A contribution to sedentary polychaete phylogeny using 18S rRNA sequence data. Journal of Zoological Systematics and Evolutionary Research , 41/3: 186-195.
Bleidorn, C., L. Vogt, T. Bartolomaeus. 2003. Insights into polychaete phylogeny ( Annelida ) inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution , 29/2: 279-288.
Bock, S. 1942. On the structure and affinities of “Thalassema” lankesteri and the classification of the group Echiuroidea . Göteborgs Kungliga Vetenskaps- och Vitterhets-Samhälles Handlingar, Sjätte följden , 2/6: 1-94.
Bourlat, S., C. Nielsen, A. Economou, M. Telford. 2008. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Molecular Phylogenetics and Evolution , 49: 23-31.
Brusca, R., G. Brusca. 2003. Invertebrates (2nd Edition) . Sunderland, MA: Sinauer Associates.
Butler, A., T. Rees, P. Beesley, N. Bax. 2012. Marine Biodiversity in the Australian Region. PL0S One , 5/8: e11831. Accessed March 25, 2013 at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011831 .
Cowles, D. 2010. " Urechis caupo Fisher and MacGinitie, 1928" (On-line). Invertebrates of the Salish Sea. Accessed March 25, 2013 at http://www.wallawalla.edu/academics/departments/biology/rosario/inverts/Echiura/Urechis_caupo.html .
Dunn, C., A. Hejnol, D. Matus. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature , 452: 745-749.
Fish, J., S. Fish. 1996. A Student's Guide to the Seashore, 2nd Edition . Cambridge, England: Cambridge University Press.
Goto, R., T. Okamoto, H. Ishikawa, Y. Hamamura, M. Kato. 2013. Molecular phylogeny of echiuran worms ( Phylum : Annelida ) reveals evolutionary pattern of feeding mode and sexual dimorphism. PLoS ONE , 8/2: e56809. Accessed September 24, 2013 at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0056809 .
Harris, R., V. Jaccarini. 1981. Structure and function of the anal sacs of Bonellia virirdis ( Echiura : Bonelliidae ). Journal of the Marine Biological Association of the United Kingdom , 61: 413-430.
Hessling, R., W. Westheide. 2002. Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. Journal of Morphology , 252/2: 100-113.
IUCN, 2013. "The IUCN Redlist of Threatened Species. Version 2013.1" (On-line). Accessed September 24, 2013 at http://www.iucnredlist.org .
Jaccarini, V., L. Agius, P. Schembri, M. Rizzo. 1983. Sex determination and larval sexual interaction in Bonellia viridis Rolando (Echiura: Bonelliidae). Journal of Experimental Marine Biology and Ecology , 66/1: 25-40. Accessed March 25, 2013 at http://www.sciencedirect.com/science/article/pii/0022098183900254 .
Kozloff, E. 1987. Marine Invertebrates of the Pacific Northwest . Seattle, WA: University of Washington Press.
Lehrke, J. 2011. Phylogeny of Echiura ( Annelida , Polychaeta ) inferred from morphological and molecular data - implications for character evolution . Bonn, Germany: Rheinischen Friedrich - Wilhelms - Universität Bonn. Accessed October 21, 2013 at http://hss.ulb.uni-bonn.de/2012/2971/2971.pdf .
Margulis, L., M. Chapman. 2009. Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth, 4th Edition . Boston, MA: Elsevier.
McHugh, D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of Sciences of the U.S.A. , 94: 8006-8009.
Murina, G. 1982. On the sipunculans and echiurans fauna of the Mediterranean and Iberian Basin. Trudy Instituta Okeanologii , 117: 178-191.
Newby, W. 1940. The embryology of the echiuroid worm Urechis caupo . Memoirs of the American Philosophical Society , 16: 1-219.
Nishikawa, T. 2002. Comments on the taxonomic status of Ikeda taenioides (Ikeda, 1904) with some amendments in the classification of the phylum Echiura. Zoological Science , 19: 1175-1180.
Piper, R. 2007. Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals . Westport, CT: Greenwood.
Purschke, G. 2007. Echiura ( Echiurida ), IgelwĂĽrmer. Pp. 416-420 in pezielle Zoologie. Teil: Einzeller und Wirbellose Tiere, 2nd edition . Stuttgart, Germany: Gustav Fischer Verlag.
Shapiro, L. 2012. " Echiura " (On-line). Encyclopedia of Life. Accessed March 25, 2013 at http://eol.org/pages/8847/details .
Stephen, A., S. Edmonds. 1972. The Phyla Sipuncula and Echiura . London, U.K.: Trustees of the British Museum (Natural History).
Struck, T., N. Schult, T. Kusen, E. Hickman, C. Bleidorn, D. McHugh, K. Halanych. 2007. Annelid phylogeny and the status of Sipuncula and Echiura . BMC Evolutionary Biology , 7/57: doi:10.1186/1471-2148-7-57. Accessed March 25, 2013 at http://www.biomedcentral.com/1471-2148/7/57 .
Waggoner, B. 1995. "Introduction to the Echiura " (On-line). University of California Museum of Paleontology. Accessed March 25, 2013 at http://www.ucmp.berkeley.edu/annelida/echiura.html .
Zrzavy, J., P. Riha, L. Pialek, J. Janouskovek. 2009. Phylogeny of Annelida ( Lophotrochozoa ): total - evidence analysis of morphology and six genes. BMC Evolutionary Biology , 9/1: 189.
2013. " Echiura " (On-line). World Register of Marine Species. Accessed March 25, 2013 at http://www.marinespecies.org/aphia.php?p=taxlist&pid=1269&rComp=%3E%3D&tRank=220 .